K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

Nhanh lên các bạn nhé! Mình cần gấp

7 tháng 3 2019

vì \(\frac{7^{24}+1}{7^{25}+1}< 1< \frac{7^{49}+1}{7^{48}+1}\)  

\(\Rightarrow\) \(\frac{7^{24}+1}{7^{25}+1}< \frac{7^{49+1}}{7^{48}+1}\Rightarrow A< B\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

Ta có:

7A=7*(7^2010+1)/7^2011-1=7^2011+7/7^2011-1=(7^2011-1)+8/7^2011-1=1+8/7^2011-1

7B=7*(7^2011+1)/7^2012-1=7^2012+7/7^2012-1=(7^2012-1)+8/7^2012-1=1+8/7^2012-1

Vì 8/7^2011-1>8/7^2012-1 nên 1+8/7^2011-1>1+8/7^2012-1 hay A>B

Vậy: A>B

đúng cho mình nha ! . . .=) . . .

1 tháng 3 2019

xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1

=> Ta chỉ có thể so sánh phần cơ số

vì 7>3 => 7 mũ n>3 mũ n

=> A lớn hơn B

9 tháng 8 2015

a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}

5 tháng 3 2019

A:B thì phải nhân nghịch đảo chứ ?

19 tháng 5 2023

a, \(\dfrac{10}{17}\) + \(\dfrac{5}{-13}\) - \(\dfrac{11}{25}\) + \(\dfrac{7}{17}\) - \(\dfrac{8}{13}\)

= ( \(\dfrac{10}{17}\) + \(\dfrac{7}{17}\)) - ( \(\dfrac{5}{13}\) + \(\dfrac{8}{13}\)) - \(\dfrac{11}{25}\)

\(\dfrac{17}{17}\) - \(\dfrac{13}{13}\) - \(\dfrac{11}{25}\)

= 1 - 1 - \(\dfrac{11}{25}\)

= - \(\dfrac{11}{25}\)

19 tháng 5 2023

b, 0,3 - \(\dfrac{93}{7}\) - 70% - \(\dfrac{4}{7}\)

= 0,3 - 0,7 - ( \(\dfrac{93}{7}+\dfrac{4}{7}\))

= - 0,4 - \(\dfrac{97}{7}\)
= - \(\dfrac{2}{5}\) - \(\dfrac{97}{7}\)

= - \(\dfrac{499}{35}\)

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

9 tháng 5 2016

ta có:\(7A=\frac{7\left(7^{2010}+1\right)}{7^{2011}-1}=\frac{7^{2011}+7}{7^{2011}-1}=\frac{7^{2011}-1+8}{7^{2011}-1}=\frac{7^{2011}-1}{7^{2011}-1}+\frac{8}{7^{2011}-1}=1+\frac{8}{7^{2011}-1}\)

\(7B=\frac{7\left(7^{2011}+1\right)}{7^{2012}-1}=\frac{7^{2012}+7}{7^{2012}-1}=\frac{7^{2012}-1+8}{7^{2012}-1}=\frac{7^{2012}-1}{7^{2012}-1}+\frac{8}{7^{2012}-1}=1+\frac{8}{7^{2012}-1}\)

vì 72011-1<72012-1

\(\Rightarrow\frac{8}{7^{2011}-1}>\frac{8}{7^{2012}-1}\)

=>A>B