Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngoài ra a/b>1 thì a+m/b+m > 1 (m thuộc z, m khác 0) và a,b cậu biết rồi đó
Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :
\(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)
''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :
\(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)
Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)
Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)
Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)
Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)
\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)
\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)
mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)
nên E<F
Ta thấy \(7^{58}>7^{57}\Rightarrow7^{58}+2>7^{57}+2\Rightarrow E=\dfrac{7^{58}+2}{7^{57}+2}>1\)
\(7^{57}< 7^{58}\Rightarrow7^{57}+200< 7^{58}+200\Rightarrow F=\dfrac{7^{57}+200}{7^{58}+200}< 1\)
Vậy E > F
a) 13/57=13+16/57+16=29/73 ( Ghi nhớ SKG Toán 6)
-=> 13/57 < 29/73
b) 17/42 = 17-4/42-4 = 13/38
=> 17/42 > 13/38
c)7/41 = 7+6/41+6= 13/47
=> 7/41<13/47
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~