K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

xin lỗi là 9945

29 tháng 3 2018

là sao bạn

24 tháng 10 2019

\(x^{2019}+y^{2019}=2x^{1009}.y^{1009}< =>x^{2020}+x.y^{2019}=2x^{1010}y^{1009}< =\)\(>\left(x^{1010}-y^{1009}\right)^2=y^{2018}\left(1-xy\right)=>\sqrt{1-xy}=\frac{x^{1010}-y^{1009}}{y^{1009}}\)

x;y là số hữu tỉ nên có dạng \(x=\frac{m}{n};y=\frac{p}{q}\left(m;n;p;q\in Z\right)\)=> \(\sqrt{1-xy}=\frac{m^{1010}.q^{1009}-n^{1010}.p^{1009}}{n^{1010}.p^{1009}}=\frac{A}{B}\left(A;B\in Z\right)\)=> \(\sqrt{1-xy}\in Q\)

21 tháng 6 2020

Ta có:

\(2a^2+b^2-2ab-6a+2b+5=0\)

\(\Leftrightarrow\left[\left(a-b\right)^2-2\left(a-b\right)+1\right]+\left(b^2-4b+4\right)=0\)

\(\Leftrightarrow\left(a-b+1\right)^2+\left(b-2\right)^2=0\)

\(\Rightarrow b=2;a=1\)

Khi đó phương trình tương đương với:

\(x^2-2x-m^2-1=0\)

Xét \(\Delta'=1+m^2+1>0\) có 2 nghiệm phân biệt

Không hiểu ý đề bài cho lắm :V

21 tháng 6 2020

 có \(\Delta>0\) rồi xét P<0 là ok. 

Thanks ~~

24 tháng 9 2019

Ta có a^2018 + b^2018 +c^2108 = a^1009b^1009 + b^1009c^1009 +c^1009a^1009

       => a^2018 + b^2018 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009 =0

      => 2( a^2018 +b^2108 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009) =0

      => [(a^1009)^2 -2a^1009b^1009 +(b^1009)^2] + [(b^1009)^2 -2b^1009c^1009 +(c^1009)^2] +[(c^1009)^2 -2c^1009a^1009 +(c^1009)^2] =0

     => (a^1009 -b^1009)^2 + (b^1009 -c^1009)^2 + (c^1009 -a^1009)^2 =0

   Vì (a^1009 -b^1009)^2 , (b^1009-c^1009)^2 , (c^1009- a^1009)^2 >_0 ( với mọi a,b,c)

    => a^1009 -b^1009 =0 , b^1009-c^1009 =0 , c^1009-a^1009 =0

   => a=b=c=0

 Thay vào A : A=0

Vậy A=0

20 tháng 10 2017

tau méc thầy hùng

5 tháng 4 2015

Để pt có nghiệm là \(\sqrt{2}-1\)thì \(\left(\sqrt{2}-1\right)^2+a.\left(\sqrt{2}-1\right)+b=0\)

=> 3 -2\(\sqrt{2}\) + a.\(\sqrt{2}\) - a + b = 0 => (a - 2).\(\sqrt{2}\) = = a - b -3

Nếu a -2 = 0 =>  a = 2 => 0.\(\sqrt{2}\) = 2 -b -3 => b = -1 thoả mãn điều kiện a; b là số hữu tỉ

Nếu a - 2 khác 0 => \(\sqrt{2}=\frac{a-b-3}{a-2}\) (*). Nhận xét : a - b - 3 ; a  -2 đều là các số hữu tỉ nên \(\frac{a-b-3}{a-2}\)là số hữu tỉ. Nhưng \(\sqrt{2}\) là số vô tỉ nên  (*) không thể xảy ra => a -2 khác 0 ko thoả mãn

Vậy để pt có nghiệm \(\sqrt{2}-1\) thì a = 2 và b = -1

18 tháng 10 2018

vào câu trả lời tương tự đi