DTDA2k8 : 2-25x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)
Bạn dùng phương pháp phân tích đa thức thành nhân tử sẽ đc :
(2x-1).(x+3).(x+2).(3x-1) = 0
<=> x=1/2 hoặc x=-3 hoặc x=-2 hoặc x=1/3
Vậy .............
Tk mk nha
\(b.6x^4+25x^3+12x^2-25x+6=0\\\Leftrightarrow 6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\\\Leftrightarrow 6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\\\Leftrightarrow \left(6x^3+13x^2-14x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^3+18x^2-5x^2-15x+x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)\right]\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-5x+1\right)\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-3x-2x+1\right)\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[3x\left(2x-1\right)-\left(2x-1\right)\right]\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(2x-1\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-1=0\\x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{1}{2}\\x=-3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};\frac{1}{2};-3;-2\right\}\)
\(2x^4-9x^3+14x^2-9x+2=0\\\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\\\Leftrightarrow 2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\\\Leftrightarrow \left(2x^3-7x^2+7x-2\right)\left(x-1\right)=0\\\Leftrightarrow \left[2\left(x^3-1\right)-7x\left(x-1\right)\right]\left(x-1\right)=0\\\Leftrightarrow \left(x-1\right)^2\left[2\left(x^2+x+1\right)-7x\right]=0\\\Leftrightarrow \left(2x^2+2x+2-7x\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-5x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-x-4x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x-1\right)^2=0\\\Leftrightarrow \left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=1\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{2};1\right\}\)
\(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow\) \(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\) \(6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left[6x^2\left(x+3\right)-5x\left(x+3\right)+x+3\right]=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\) \(x+2=0\) hoặc \(x+3=0\) hoặc \(2x-1=0\) hoặc \(3x-1=0\)
\(\Leftrightarrow\) \(x=-2\) hoặc \(x=-3\) hoặc \(x=\frac{1}{2}\) hoặc \(x=\frac{1}{3}\)
Vậy, tập nghiệm của pt là \(S=\left\{-2;-3;\frac{1}{2};\frac{1}{3}\right\}\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(6\left(x^2+\frac{1}{x^2}\right)+25\left(x-\frac{1}{x}\right)+12=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
\(\Rightarrow6\left(t^2+2\right)+25t+12=0\)
\(\Leftrightarrow6t^2+25t+24=0\Rightarrow\left[{}\begin{matrix}t=-\frac{3}{2}\\t=-\frac{8}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-\frac{3}{2}\\x-\frac{1}{x}=-\frac{8}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\3x^2+8x-3=0\end{matrix}\right.\)
a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{-2;1\right\}\)
b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)
hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)
(+) Kiểm tra x = 0 , sau đó chia cả hai vế cho x^2
(+) đặt x- 1/x = a => x^2 + 1/x^2 = a^2 + 2
Thay vô giải pt bậc hai
\(2-25x^2=0\Rightarrow\left(\sqrt{2}\right)^2-\left(5x\right)^2=0\)
\(\Rightarrow\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)
Hoặc \(\sqrt{2}-5x=0\Rightarrow5x=\sqrt{2}\Rightarrow x=\frac{\sqrt{2}}{5}\)
Hoặc \(\sqrt{2}+5x=0\Rightarrow5x=-\sqrt{2}\Rightarrow x=-5\)
\(2-25x^2=0\)
\(\Rightarrow25x^2=2-0=2\)
\(x^2=\frac{2}{25}\)
\(x=\frac{1}{5}.\sqrt{2}\)
\(25x^2-16=0=>\left(5x\right)^2-4^2=0=>\left(5x-4\right)\left(5x+4\right)=0\)
\(=>\orbr{\begin{cases}5x-4=0\\5x+4=0\end{cases}=>\orbr{\begin{cases}5x=4=>x=\frac{4}{5}\\5x=-4=>x=-\frac{4}{5}\end{cases}}}\)
itsssssssssssssssssssssss