K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(2-25x^2=0\Rightarrow\left(\sqrt{2}\right)^2-\left(5x\right)^2=0\)

\(\Rightarrow\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)

Hoặc \(\sqrt{2}-5x=0\Rightarrow5x=\sqrt{2}\Rightarrow x=\frac{\sqrt{2}}{5}\)

Hoặc \(\sqrt{2}+5x=0\Rightarrow5x=-\sqrt{2}\Rightarrow x=-5\)

27 tháng 6 2016

\(2-25x^2=0\)

\(\Rightarrow25x^2=2-0=2\)

\(x^2=\frac{2}{25}\)

\(x=\frac{1}{5}.\sqrt{2}\)

9 tháng 3 2018

Bạn dùng phương pháp phân tích đa thức thành nhân tử sẽ đc :

(2x-1).(x+3).(x+2).(3x-1) = 0

<=> x=1/2 hoặc x=-3 hoặc x=-2 hoặc x=1/3

Vậy .............

Tk mk nha

9 tháng 3 2018

giải ra

a: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

=>x+1=0

hay x=-1

c: \(x^2\left(x^2+2\right)-x^2-2=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

13 tháng 2 2016

\(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow\)  \(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\)  \(6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left[6x^2\left(x+3\right)-5x\left(x+3\right)+x+3\right]=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\)  \(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\)   \(x+2=0\)  hoặc  \(x+3=0\)  hoặc  \(2x-1=0\)  hoặc  \(3x-1=0\)

\(\Leftrightarrow\)   \(x=-2\)  hoặc \(x=-3\)  hoặc  \(x=\frac{1}{2}\)  hoặc  \(x=\frac{1}{3}\)

Vậy, tập nghiệm của pt là  \(S=\left\{-2;-3;\frac{1}{2};\frac{1}{3}\right\}\)

15 tháng 2 2017

a) Gần giống cho nó giống luôn.

cần thêm (-x^3+2x^2-x) là giống

\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)

\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)

\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)

Nghiệm duy nhất: x=1

25 tháng 1 2019

câu d

2 tháng 3 2020

\(\left(5x-4\right)^2+3\left(16-25x^2\right)=0\)

\(\Leftrightarrow\left(5x-4\right)^2-3\left(25x^2-16\right)=0\)

\(\Leftrightarrow\left(5x-4\right)^2-3\left(5x-4\right)\left(5x+4\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\left[5x-4-3\left(5x+4\right)\right]=0\)

\(\Leftrightarrow\left(5x-4\right)\left(5x-4-15x-12\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\left(-10x-16\right)=0\)

\(\Leftrightarrow5x-4=0\)hoặc \(-10x-16=0\)

\(\Leftrightarrow5x=4\)         hoặc \(-2\left(5x+8\right)=0\)

\(\Leftrightarrow x=\frac{4}{5}\)         hoặc \(5x+8=0\)

\(\Leftrightarrow x=\frac{4}{5}\)hoặc \(x=\frac{-8}{5}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{-8}{5};\frac{4}{5}\right\}\)

2 tháng 3 2020

Ta có: \(\left(5x-4\right)^2-3.\left(5x-4\right).\left(5x+4\right)=0\)

    \(\Leftrightarrow\left(5x-4\right).\left[\left(5x-4\right)-3\left(5x+4\right)\right]=0\)

    \(\Leftrightarrow\left(5x-4\right).\left(5x-4-15x-12\right)=0\)

    \(\Leftrightarrow-2.\left(5x-4\right).\left(5x+8\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\5x+8=0\end{cases}}\)

    \(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-8}{5}\end{cases}}\)

 Vậy \(S=\left\{\frac{4}{5};\frac{-8}{5}\right\}\)

21 tháng 7 2015

a) \(2-25x^2=0\Leftrightarrow-25x^2=-2\Leftrightarrow x^2=\frac{2}{25}\Leftrightarrow x=\frac{\sqrt{2}}{5}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

28 tháng 2 2018

b. sửa đề

\(6x^4+25x^3+12x-25x^2+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy........

28 tháng 2 2018

Bài 1 : Giải phương trình

a) (x + 3)4 + (x + 5)4 = 16

Đặt : x + 3 = t

=> x + 5 = x + 3 + 2 = t + 2

Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :

t4 + (t + 2)4 = 16

<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16

<=> 2(t4 + 4t3 + 12t2 + 16t) = 0

<=> t4 + 4t3 + 12t2 + 16t = 0

<=> (t + 2) . t . (t2 + 2y + 4) = 0

TH1 : t = 0

TH2 : t + 2 = 0 <=> t = -2

TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)

Nên t = 0 hoặc t = -2

hay x + 3 = -2 hoặc x + 3 = 0

<=> x = -5 hoặc x = -3

\(S=\left\{-5;-3\right\}\)

b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0

<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0

<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0

<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0

<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0

\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)

<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0

<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0

TH1 : x + 2 = 0 <=> x = -2

TH2 : x + 3 = 0 <=> x = -3

TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)

TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)

\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)

a) \(25x^2-2=0\)

\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)

\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)

\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)

\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)

b) \(10x-x^2-25=0\)

\(=>-x^2-5x-5x-25=0\)

\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)

\(=>\left(x+5\right)\left(-x-5\right)=0\)

\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)

\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)