K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Do K đối xứng với D qua trung điểm của BC nên ta có

\(BD=CK,BK=CD\)

Dựng đường kính DF của (I). Theo hình , thì ta  được ba điểm A, F , K thẳng hàng

ta có\(\widehat{KDL}=\widehat{DIC}\left(=90^0-\widehat{CID}\right)=>\)tam giác IDC = tam giác DKL (g.g), từ đó suy ra

\(\frac{DF}{DK}=\frac{2ID}{DK}=\frac{2DC}{KL}=\frac{KB}{KN}\)

=> tam giác DFK = tam giác KBN (c.g.c)

zì zậy nên : \(\widehat{KNB}=\widehat{DKF}=90^0-\widehat{NKF}\)

=>\(\widehat{KNB}+\widehat{NKF}=90^0,\)do đó \(AK\perp BN\)

a: Xét tứ giác BPQC có 

\(\widehat{BPC}=\widehat{BQC}=90^0\)

Do đó: BPQC là tứ giác nội tiếp

 

22 tháng 1 2022

Giải chi tiết đc ko ạ 

a: Xét ΔABH vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH\(\sim\)ΔCAB

Suy ra: \(\dfrac{AB}{CA}=\dfrac{HB}{AB}\)

hay \(AB^2=HB\cdot BC\)

b: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC 

hay MN\(\perp\)AB