K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Do K đối xứng với D qua trung điểm của BC nên ta có

\(BD=CK,BK=CD\)

Dựng đường kính DF của (I). Theo hình , thì ta  được ba điểm A, F , K thẳng hàng

ta có\(\widehat{KDL}=\widehat{DIC}\left(=90^0-\widehat{CID}\right)=>\)tam giác IDC = tam giác DKL (g.g), từ đó suy ra

\(\frac{DF}{DK}=\frac{2ID}{DK}=\frac{2DC}{KL}=\frac{KB}{KN}\)

=> tam giác DFK = tam giác KBN (c.g.c)

zì zậy nên : \(\widehat{KNB}=\widehat{DKF}=90^0-\widehat{NKF}\)

=>\(\widehat{KNB}+\widehat{NKF}=90^0,\)do đó \(AK\perp BN\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

10 tháng 8 2017

b)    CD đi qua trung điểm của đường cao AH của D ABC

· Gọi F là giao của BD CA.

Ta có BD.BE= BA.BM (cmt)

= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A

Mà BCF=BEA(cùng chắn AB)

=>BMD=BCF=>MD//CF=>D là trung điểm BF

· Gọi T là giao điểm của CD AH .

DBCD TH //BD  = > T H B D = C T C D  (HQ định lí Te-let) (3)

DFCD TA //FD  = > T A F D = C T C D  (HQ định lí Te-let) (4)

BD= FD (D là trung điểm BF ) (5)

· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .

15 tháng 3 2020

ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng

A B C I D E F M M' G S T

Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T

Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)

Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))

\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT

Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC

\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng

15 tháng 3 2020

A B C F E K D I M G H N

AM cắt KI tại H 

Dễ thấy  \(AI\perp EF\)nên \(KG\perp AI\)

\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H

AI cắt EF tại N 

Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)

\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )

Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)

Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)

\(\Rightarrow MI\perp DK\)

2 tháng 6 2018

a)    Chứng minh BA . BC = 2BD . BE

· Ta có: DBA+ ABC = 900 , EBM +ABC = 900

Þ DBA =EBM (1)

· Ta có: DONA = DOME (c-g-c)

Þ EAN= MEO

Ta lại có: DAB +BAE+ EAN  = 900, và BEM +BAE +MEO  = 900

Þ DAB= BEM (2)

· Từ (1) và (2) suy ra DBDA đồng dạng DBME (g-g)

= > B D B M = B A B E = > D B . B E = B A . B M = B A . B C 2 = > 2 B D . B E = B A . B C

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết