chứng tỏ rằng
a)20012002+20022003 ko chia hết cho 2
b)8617+9722 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)
Mà số này lại chia hết cho 3 nên:
\(1+a+3+b=4+a+0=4+a\) ⋮ 3
TH1: \(4+a=6\Rightarrow a=2\)
TH2: \(4+a=9\Rightarrow a=5\)
TH3: \(4+a=12\Rightarrow a=8\)
Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\)
b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9
Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)
Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9
Với b = 0:
\(6+a+0=9\Rightarrow a=3\)
Với b = 5:
\(6+a+5=18\Rightarrow a=7\)
Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)
Bài 3:
a) \(13\cdot15\cdot17\cdot19+23\cdot26\)
\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)
Nên tổng chia hết cho 13 tổng là hợp số không phải SNT
b) \(17^{100}-34\)
\(=17\cdot\left(17^{99}-2\right)\)
Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
1:
a: A chia hết cho 2
=>x+52+64 chia hết cho 2
=>x chia hết cho 2
=>\(x\in B\left(2\right)\)
b: B không chia hết cho 9
=>x+63+54 không chia hết cho 9
=>x+117 không chia hết cho 9
=>
\(x\notin B\left(9\right)\)
2:
a: a+1;a+2;a+3;a+4
b: a+1+a+2+a+3+a+4
=4a+10
=4a+8+2
=4(a+2)+2 không chia hết cho 4
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
1/ A=12(10a+3b) chia heets cho 12
2/
a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3
b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^