Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(4\left(2x+3y\right)+9x+5y=17x+17y=17\left(x+y\right)\)chia hết cho 17 \(\Rightarrow9x+5y\) chia hết cho 17
7a-b chia hết cho 9
=>7a-b+36b chia hết cho 9
=>7a+35b chia hết cho 9
=>7(a+5b) chia hết cho 9
Vì (7;9)=1=>a+5b chia hết cho 9
=>đpcm
Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)
A= 3a+ 12b+ 10a+ b.
A= 13a+ 13b\(⋮\) 13.
=> A\(⋮\) 13.
Vì 10a+ b\(⋮\) 13.
=> 3( a+ 4b)\(⋮\) 13.
Mà 3 không\(⋮\) 13.
=> a+ 4b\(⋮\) 13.
Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.
Chúc bạn học tốt!
a. ta có \(11\equiv1mod10\Rightarrow11^{200}\equiv1mod10\)
nên \(11^{200}-1\equiv0mod10\). Vậy \(11^{200}-1\) chia hết cho 10.
b. ta có \(12\equiv2mod10\Rightarrow12^{200}\equiv2^{200}mod10\)
nên \(12^{200}-2^{200}\equiv0mod10\). Vậy \(12^{200}-2^{200}\) chia hết cho 10.