Cho biểu thức A=\(\frac{3n+1}{n+1}\)(n thuộc Z, n khác -1)
a) Tìm giá trị của n để A có giá trị là số nguyên
b) Chứng minh rằnga là phân số tối giải với mọi giá trị của n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 4 | 1 | -1 |
n | -3 | -5 |
b, đk n khác 4
Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\))
n + 5 - n - 4 = 1 => d = 1
Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4
Lời giải:
a. Để phân số đã cho có giá trị nguyên thì:
$n+9\vdots n-6$
$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$
Mà $n>6$ nên $n-6>0$
$\Rightarrow n-6\in\left\{1;3;5;15\right\}$
$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$
b.
Gọi $d=ƯCLN(n+9, n-6)$
$\Rightarrow n+9\vdots d; n-6\vdots d$
$\Rightarrow (n+9)-(n-6)\vdots d$
$\Rightarrow 15\vdots d$
Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$
Điều này xảy ra khi:
$n-6\not\vdots 3; n-6\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.
\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A là số nguyên thì n - 1 là ước nguyên của 1
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Ai thấy đúng thì ủng hộ nha !!!
Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1
để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)
=> n-1 thuộc {-1;1}
=> n thuộc {0; 2}
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............