Cho tam giác ABC cân ở A . Lấy D thuộc AB, qua D vẽ đường thẳng song song với BC cắt AC ở E . Gọi M, N lần lượt là hình chiếu của D, E trên BC . C/m
a)BM=CN
b)DE+BC<2BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có :
\(+,AD+DB=AB\)
+) \(AE+EN=AC\)
Mà \(AB=AC,AD=AE\)
\(\Leftrightarrow DB=EN\)
Xét \(\Delta DBM;\Delta ECN\) có :
\(\left\{{}\begin{matrix}\widehat{DMB}=\widehat{ENC}=90^0\\DB=EC\\\widehat{DBM}=\widehat{ENC}\end{matrix}\right.\)
\(\Leftrightarrow\Delta DMB=\Delta ENC\left(ch-gn\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}BM=NC\\MD=NE\end{matrix}\right.\)
b/ \(\Delta BDE=\Delta DEC\left(c-g-c\right)\)
\(\Leftrightarrow BE=DC\)
Xét \(\Delta DMC\) có : \(\widehat{DMC}=90^0\)
\(\Leftrightarrow DM< DC=BE\)
\(\Delta DME=\Delta NEM\)
\(\Leftrightarrow DE=MN\)
Xét \(\Delta BEN\) có : \(\widehat{BNE}=90^0\)
\(\Leftrightarrow BN< BE\)
Xét \(\Delta DMC\) có ; \(\widehat{DMC}=90^0\)
\(\Leftrightarrow MC< DC\)
Mà \(BE=BC\)
\(\Leftrightarrow BN+MC=2.BE\)
Ta có :
\(MN+MB+MC< 2.BE\)
\(\Leftrightarrow DE+BC< 2.BE\left(đpcm\right)\)
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
ta co tu suy nghi