K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Có phải là lớp 8 không vậy?

CMR: Tam giác có 3 cạnh bằng nhau là tam giác đều

Ta vẽ \(\Delta ABC\)có AB = AC = BC

Ta có AB = AC nên \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)(1)

và AB = BC nên \(\Delta ABC\)cân tại B => \(\widehat{A}=\widehat{C}\)(2)

Từ (1) và (2) => \(\widehat{A}=\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)đều (đpcm)

CMR: Tam giác có 2 cạnh bằng nhau là tam giác cân.

Ta vẽ \(\Delta ABC\)có AB = AC.

Kẻ AH \(\perp\)BC tại H.

\(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (gt)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) => \(\widehat{B}=\widehat{C}\)(hai góc tương ứng)

=> \(\Delta ABC\)cân tại A (đpcm)

17 tháng 3 2018

huy hoàng t nói mãi mà mày éo hiểu ak ?

tại sao AB=AC thì suy ra ABC là tam giác cân " mày phải CM được AB=AC thì ABC là tam giác cân "

18 tháng 3 2018

Thằng thiểu năng, ai bảo m tam giác có 1 góc vuông thì không phải tam giác cân

18 tháng 3 2018

nó có thể là tam giác vuông cân nhé éo phải là cân nhé 

9 tháng 1 2018

Hình bạn tự vẽ nha

a) \(\Delta AEM\)vuông tại E có EI là trung tuyến 

=> EI = IA (1) => \(\Delta EIA\)cân tại I, có EIM là góc ngoài

=> \(\widehat{EIM}=2\widehat{EAI}\)

Tương tự ta có \(\widehat{HIM}=2\widehat{HAI}\)và IH = IA (2)

Từ (1) và (2) suy ra IE = IH hay \(\Delta EIH\)cân tại I

có \(\widehat{EIH}=\widehat{EIM}+\widehat{HIM}=2\widehat{EAI}+2\widehat{HAI}=2\widehat{EAH}=2\left(90^o-\widehat{ABH}\right)=2\left(90^o-60^o\right)=60^o\)

Vậy EIH là tam giác đều, suy ra EI = EH = IH

Tương tự ta có IHF là tam giác đều, suy ra IH = HF = IF

=> EI = EH = IF = HF 

Vậy HEIF là hình thoi

b) \(\Delta ABC\)là tam giac đều nên AH là đường cao cũng là đường trung tuyến

có G là trọng tâm nên \(AG=\frac{2}{3}AH\)(3)

Gọi K là trung điểm AG, suy ra \(AK=KG=\frac{1}{2}AG\)(4)

Từ (3) và (4) suy ra AK = KG = GH

Gọi O là giao điểm của EF và IH, suy ra OI = OH

\(\Delta AMG\)có IK là đường trung bình nên IK // MG 

\(\Delta IKH\)có OG là đường trung bình nên IK // OG 

=> M, O, G thẳng hàng (tiên đề Ơ-clit)

Vậy EF, MG, HI đồng quy

c) HEIF là hình thoi nên \(EF\perp HI\)

\(\Delta EIH\)đều có EO là đường cao nên \(EO=EI\sqrt{\frac{3}{4}}\)(bạn tự chứng minh)

\(EF=2EO=2EI\sqrt{\frac{3}{4}}=AM\sqrt{\frac{3}{4}}\)(5)

EF đạt GTNN khi AM đạt GTNN

mà \(AM\ge AH\)nên EF đạt GTNN khi M trùng H

Khi đó AM là đường cao trong tam giác đều ABC nên ta cũng có \(AM=AB\sqrt{\frac{3}{4}}=a\sqrt{\frac{3}{4}}\)(6)

Từ (5) và (6) suy ra \(EF=a\left(\sqrt{\frac{3}{4}}\right)^2=\frac{3}{4}a\)

Vậy EF đạt GTNN là \(\frac{3}{4}a\)khi M là chân đường cao hạ từ A xuống BC.

7 tháng 1 2018

Ở đề không có điểm K, sao ở câu hỏi lại có điểm K vậy em?

17 tháng 3 2018

t trả lời cho, khoi phải nhờ bọn CTV:

.

Do hình có từ vuông trong tên chắc chắn sẽ có it nhất 1 góc vuông ( trừ HCM )

Nên tam giác vuông là tam giác có 1 góc vuông.

.

17 tháng 3 2018

m ngu à từ vuông có thể có nhiều góc vuông nhé chứ ko phải 1 sai rồi

* tam giác đều 
- chứng minh tam giác có 3 cạnh = nhau 
- chứng minh tam giác có 3 góc = nhau 
- chứng minh tam giác có 2 góc = 60* 
- chứng minh tam giác cân có 1 góc = 60* 

Có tổng cộng 4 cách nha

6 tháng 4 2019

ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến

học tốt!

6 tháng 1 2017

2) góc còn lại là 180 - 2.60=60

vậy 3 góc =60 độ => tam giác đều


 

6 tháng 1 2017

1) 3 góc = nhau => 3*A=180 độ (gọi 3 góc là A,B,C)

=> a=60 độ = góc B = góc C

5 tháng 8 2017

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> 

hay  ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được đó là tam giác đều.

15 tháng 12 2016

đăng từng câu thui chứ!!!!!ucche

19 tháng 12 2016

đăng mấy câu thì kệ họ đâu liên quan j tới ông mà ns

a: Xét ΔDEA và ΔDFB có

DE=DF

góc D chung

DA=DB

=>ΔDEA=ΔDFB

b: ΔDEA=ΔDFB

=>góc DEA=góc DFB

=>góc KEF=góc KFE
=>ΔKEF cân tại K

c: ΔDEF cân tại D

mà DH là đường cao

nên DH là trung tuyến

=>DH,EA,FB đồng quy