K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Ta có : 

\(\left(\frac{1}{32}\right)^7=\frac{1^7}{32^7}=\frac{1}{\left(2^5\right)^7}=\frac{1}{2^{5.7}}=\frac{1}{2^{35}}\)

\(\left(\frac{1}{16}\right)^9=\frac{1^9}{16^9}=\frac{1}{\left(2^4\right)^9}=\frac{1}{2^{4.9}}=\frac{1}{2^{36}}\)

Vì \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\) ( cùng tử, mẫu nào bé hơn thì phân số đó lớn hơn ) nên \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Vậy \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Ta có  :     \(\left(\frac{1}{32}\right)^7=\left(\frac{1}{2^5}\right)^7=\frac{1}{2^{35}}\)

                 \(\left(\frac{1}{16}\right)^9=\left(\frac{1}{2^4}\right)^9=\frac{1}{2^{36}}\)

DO :  \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\)\(\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Tk mk nha !!! 

10 tháng 10 2017

Ta có :

\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)

ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)

             = 3/2^2.8/3^2 ... 99/10^2

             = 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2

             = 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10

             = 1/10 . 11/2 = 11/20 < 11/19

              Vậy M < 11/19

14 tháng 4 2017

\(\frac{2011.4023+2012}{2012.4023-2011}=\frac{2011.4023+2011+1}{2012.4023-2012-1}=\frac{2011.4023+2011.1+1}{2012.4023-2012.1-1}\)

\(=>\frac{2012.4023+2012.1+1}{2012.4023-2012.1-1}=\frac{2012.\left(4023+1\right)+1}{2012.\left(4023-1\right)-1}\)

\(=\frac{4023+1+1}{4023-1-1}=\frac{4023+2}{4023-2}=\frac{4025}{4021}\)

Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1

25 tháng 3 2018

<br class="Apple-interchange-newline"><div id="inner-editor"></div>=>2012.4023+2012.1+12012.4023−2012.1−1 =2012.(4023+1)+12012.(4023−1)−1 

=4023+1+14023−1−1 =4023+24023−2 =40254021 

Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

3 tháng 5 2018

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)

\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)

\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)

\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)

\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)

26 tháng 7 2017

\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)

\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)

\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)

\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)

\(B=\frac{1}{10}.\frac{11}{2}\)

\(B=\frac{11}{20}>\frac{11}{21}\)

17 tháng 11 2015

\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)

\(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)

=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)

29 tháng 1 2016

Ta có: (+)  (1/32)^7   =  [(1/2)^5]^7   =(1/2)^35

          (+)  (1/16)^9=    [(1/2)^4]^9   =(1/2)^36

          Vì 35 <36

   => (1/2)^35 > (1/2)^36

  => (1/32)^7 > (1/16)^9

29 tháng 1 2016

Bài Toán khó đây