K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019
😴😴😴😴😴😴😴
13 tháng 5 2019

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

16 tháng 9 2017

đặt x+y=a

xy=b

ntc a-2

16 tháng 9 2017

chụp cho tớ 20 bài bđt đi chi

29 tháng 4 2018

      \(y\left(x-2\right)=x^2+3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)

\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)

Do  \(x,y\)nguyên   nên   \(x-2\)và    \(y-x-2\)nguyên

Ta lập bảng sau:

\(x-2\) \(1\)\(7\)\(-1\)\(-7\)
\(x\)\(3\)\(9\)    \(1\)\(-5\)
\(y-x-2\)\(7\)\(1\)\(-7\)\(-1\)
\(y\)\(12\)\(12\)\(-4\)\(-4\)

Vậy....

p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)

 

28 tháng 4 2018

Xét x=3  thì pt vô nghiệm 

xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)

Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá

28 tháng 3 2019

Đặt \(x-y=a;xy=b\)

\(\Rightarrow16a^3+48ab-15b=371\)

\(\Rightarrow b=\frac{371-16a^3}{48a-15}\)

\(\Rightarrow16a^3-371⋮48a-15\)

Dùng phép chia đa thức ..... ta được :

\(284553⋮48a-15\)

Mà : \(284533=3^5\cdot1171\)

\(48a-15\ge33\)

Dùng đồng dư 48 .....

\(\Rightarrow\left[{}\begin{matrix}48a-15=3^4\\48a-15=1171\cdot3^3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=2,b=3\\a=659,b=-144829\end{matrix}\right.\)

Dùng định lý Vi-et đảo loại được trường hợp 2

\(\Rightarrow a=2;b=3\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ....

#Kaito#