Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Đặt \(x-y=a;xy=b\)
\(\Rightarrow16a^3+48ab-15b=371\)
\(\Rightarrow b=\frac{371-16a^3}{48a-15}\)
\(\Rightarrow16a^3-371⋮48a-15\)
Dùng phép chia đa thức ..... ta được :
\(284553⋮48a-15\)
Mà : \(284533=3^5\cdot1171\)
\(48a-15\ge33\)
Dùng đồng dư 48 .....
\(\Rightarrow\left[{}\begin{matrix}48a-15=3^4\\48a-15=1171\cdot3^3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=2,b=3\\a=659,b=-144829\end{matrix}\right.\)
Dùng định lý Vi-et đảo loại được trường hợp 2
\(\Rightarrow a=2;b=3\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy ....
#Kaito#
Dùng định lý kẹp nhé
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
có x2 >= 0
<=> x3 + 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)
Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x3 + 3x2 + 3x + 1
<=> x = 0
Thay vào biểu thức được y = -3
Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)
Cái phần "
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
" bị sai
đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3
thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x = -1 => y = -1
Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)