K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

      \(y\left(x-2\right)=x^2+3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)

\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)

\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)

Do  \(x,y\)nguyên   nên   \(x-2\)và    \(y-x-2\)nguyên

Ta lập bảng sau:

\(x-2\) \(1\)\(7\)\(-1\)\(-7\)
\(x\)\(3\)\(9\)    \(1\)\(-5\)
\(y-x-2\)\(7\)\(1\)\(-7\)\(-1\)
\(y\)\(12\)\(12\)\(-4\)\(-4\)

Vậy....

p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)

 

28 tháng 4 2018

Xét x=3  thì pt vô nghiệm 

xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)

Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá

12 tháng 8 2020

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

17 tháng 3 2018

  2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)

17 tháng 5 2018

Giải:

\(\left(x-3\right)y^2-x^2=48\)

\(\Leftrightarrow\left(x-3\right)y^2-x^2+9=57\)

\(\Leftrightarrow\left(x-3\right)y^2-\left(x^2-9\right)=57\)

\(\Leftrightarrow\left(x-3\right)y^2-\left(x-3\right)\left(x+3\right)=57\)

\(\Leftrightarrow\left(x-3\right)\left(y^2-x-3\right)=57\)

Ta có bảng:

\(x-3\) 1 -1 57 -57 3 -3 19 -19
\(y^2-x-3\) 57 -57 1 -1 19 -19 3 -3
x 4 2 60 -54 6 0 22 -16
y 8 \(\sqrt{62}\) \(2\sqrt{30}\) \(\sqrt{6}\) \(\sqrt{66}\) \(2\sqrt{15}\) \(\sqrt{82}\) \(2\sqrt{11}\)
nhận loại loại loại loại loại loại loại

Vậy ...

22 tháng 3 2018

1)\(ĐKXĐ:x\ne0\)

Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)

\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)

\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)

\(=2a+a^2-4a+4-a^2+2a=4\)

\(\Rightarrow\left(x+2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)