cho s = 3^1 + 3^3 + ... +3^2015 tinh s ai gup voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2015}{5^{2014}}\Rightarrow4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}-\frac{2015}{5^{2015}}\)
Đặt B = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
=> 5B = \(5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
=> 4B = \(5-\frac{1}{5^{2014}}<5\)
=> B < \(\frac{5}{4}\)=> 4S < 5/4 => S < 5/16< 1/3
=> S < 1/3
đúng nhé
32S=33+35+37+39+...........+32017
9S-S=32017-31
8S=32017-3
S=\(\frac{3^{2017}-3}{8}\)
S = 31 + 33 + 35 + 37 + ........+ 32015
9S=33+35+37+...+32015+22017
9S-S=32017-3
S=32017-3:8
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
S = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2014x2015 + 1/2015x2016
S = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015 + 1/2015 - 1/2016
S = 1 - 1/2016
S = 2015
\(s=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2015}}\)
Suy ra : \(3S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2014}}\)
Nên \(3S-S=1-\frac{1}{3^{2015}}\)hay \(2S=1-\frac{1}{3^{2015}}\)Khi đó S =\(\frac{1}{2}-\frac{1}{3^{2015}.2}\)
Vậy ..................
\(S=3^1+3^3+....+3^{2015}\left(1\right)\)
\(\Rightarrow9S=3^3+3^5+.....+3^{2017}\left(2\right)\)
Lấy \(\left(2\right)-\left(1\right)\)ta được :
\(9S-S=\left(3^3+3^5+....+3^{2017}\right)-\left(3^1+3^3+....+3^{2015}\right)\)
\(\Rightarrow8S=3^{2017}-3\)
\(\Rightarrow S=\frac{3^{2017}-3}{8}\)
Vậy \(S=\frac{3^{2017}-3}{8}\)
S = 3^1 + 3^3 + ... + 3^2015
3^2.S = 3^3 + 3^5 + ... + 3^2017
9S - S = (3^3 + 3^5 + ... + 3^2017) - (3^1 + 3^3 + ... + 3^2015)
8S = 3^3 + 3^5 + ... + 3^2017 - 3^1 - 3^3 - ... - 3^2015
8S = 3^2017 - 3^1
S = (3^2017 - 3)/8