Phân tích đa thức thành nhân thử :
\(x^3-8+2x\left(x-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
Đặt \(x^2-2x+4=a\)
Khi đó \(\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8=\left(a-1\right)\left(a+1\right)-8\)
\(=a^2-1-8\)
\(=a^2-9\)
\(=\left(a-3\right)\left(a+3\right)\)
\(=\left(x^2-2x+4-3\right)\left(x^2-2x+4+3\right)\)
\(=\left(x^2-2x+1\right)\left(x^2-2x+7\right)\)
\(=\left(x-1\right)^2\left(x^2-2x+7\right)\)
Đặt \(2x^2-x-2=t\)
Ta có:
\(A=\left(t+3\right)\left(t-3\right)+8\)
\(A=t^2-9+8\)
\(A=\left(t-1\right)\left(t+1\right)\)
Thay vào ta được:
\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)
a: \(P=-3x^3+5x\)
\(=x\cdot\left(-3x^2\right)+x\cdot5\)
\(=x\left(-3x^2+5\right)\)
b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)
\(=\left(2x-1\right)\left(1+x-2\right)\)
\(=\left(2x-1\right)\left(x-1\right)\)
c: \(R=4-16x^2\)
\(=4\cdot1-4\cdot4x^2\)
\(=4\left(1-4x^2\right)\)
\(=4\left(1-2x\right)\left(1+2x\right)\)
d: \(S=36-4x^2\)
\(=4\cdot9-4\cdot x^2\)
\(=4\left(9-x^2\right)\)
\(=4\left(3-x\right)\left(3+x\right)\)
e: \(T=8x^3-1\)
\(=\left(2x\right)^3-1^3\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)
f: \(Q=8-x^3\)
\(=2^3-x^3\)
\(=\left(2-x\right)\left(4+2x+x^2\right)\)
g: \(N=64-x^3\)
\(=4^3-x^3\)
\(=\left(4-x\right)\left(16+4x+x^2\right)\)
a, \(x^3-2x-y^3+2y\) (sửa đề)
\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)
b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)
\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)
\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4z\right)\)
Bạn xem lại đề câu a giúp mình nha!
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)
\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)
\(=x^8+12x^5-2x^4+36x^2-12x-99\)
\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)
\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)
\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)
đặt y=x2+4x+8 ta được
y2+3xy+2x2=y2+xy+2xy+2x2=y(y+x)+2x(y+x)
=(y+x)(y+2x)
thay y=x2+4x+8 ta được
(x2+5x+8)(x2+7x+8)
=(x^2+4x+8)2+2x(x^2+4x+8)+(x^2+4x+8)+2x^2
=(x^2+5x+8)(x^2+6x+8)
\(8+8\left(x-2\right)^3\)
\(=8\left[1+\left(x-2\right)^3\right]\)
\(=8\left(1+x-2\right)\left[1-\left(x-2\right)+\left(x-2\right)^2\right]\)
\(=8\left(x-1\right)\left(1-x+2+x^2-4x+4\right)\)
\(=8\left(x-1\right)\left(x^2-5x+7\right)\)
#\(Toru\)
=8[(x-2)^3+1]
=8(x-2+1)[(x-2)^2-(x-2)+1]
=8(x-1)(x^2-4x+4-x+2+1)
=8(x-1)(x^2-5x+7)
\(x^3-8+2x\left(x-2\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)=\left(x-2\right)\left(x+2\right)\left(x+2\right)\)