K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

A/2 = x^2-5/2.x+5/2

      = (x^2-5/2.x+25/16) + 15/16

      = (x-5/2)^2 + 15/16 >= 15/16

=> A >= 15/16 . 2 = 15/8

Dấu "=" xảy ra <=> x-5/2 = 0 <=> x=5/2

Vậy ............

Tk mk nha

6 tháng 3 2019

Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 4 có đáp án (Đề 2)

Chọn C.

17 tháng 12 2022

\(-x^2-5x+5\\ =-\left(x^2+5x-5\right)\\ =-\left(x^2+5x+\dfrac{25}{4}-\dfrac{45}{4}\right)\\ -\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\)

có \(\left(x+\dfrac{5}{2}\right)^2\ge0\\ =>-\left(x+\dfrac{5}{2}\right)^2\le0\\ =>-\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\le\dfrac{45}{4}\)

dấu "=" xảy ra khi \(\left(x+\dfrac{5}{2}\right)^2=0< =>x=-\dfrac{5}{2}\)

vậy GTLN của biểu thức A là 45/4 khi x=-5/2

18 tháng 8 2016

làm giúp mình với ngày mai mình phải nộp rồi

18 tháng 8 2016

Ta có 2x- 5x + 5 = (x√2)- 2*5**√2 *x/(2√2) + 25/8 + 15/8 = (√2 * x + 5/(2√2))+ 15/8 >= 15/8 

=> 1/(2x- 5x + 5) <= 8/15

Vậy GTLN của nó là 8/15

21 tháng 11 2018

Sửa chút đề nhé! 

Với x khác -5/3

A= (3x^3+5x^2-9x-15):(3x+5)

= [x^2(3x+5)-3(3x+5)]:(3x+5)

 =(x^2-3) (3x+5):(3x+5)

=x^2-3\(\ge-3\)

Dấu '=' xảy ra khi x=0

max A=-3 khi x=0

18 tháng 7 2017

A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017

Dấu "=" xảy ra khi      \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

Vậy MinA= 2017 khi x=1; y=-1

 

A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)

Vậy Max A bằng 7 khi x=1; y=-1/2

 

 

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

26 tháng 5 2023

A = - 4\(x\)2 + 5\(x\) - 3

A = -( 4\(x^2\) - 5\(x\) + \(\dfrac{25}{16}\))  - \(\dfrac{23}{16}\)

A = -( 2\(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\)

Vì ( 2\(x\) - \(\dfrac{5}{4}\))2 ≥ 0; ⇒ - ( 2\(x\) - \(\dfrac{5}{4}\))2 ≤ 0 ⇒ -( 2 \(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\) ≤ - \(\dfrac{23}{16}\)

A(max) = - \(\dfrac{23}{16}\) ⇔ 2\(x\) - \(\dfrac{5}{4}\) = 0 ⇔ \(x\) = \(\dfrac{5}{4}\): 2 = \(\dfrac{5}{8}\)

Kết luận giá trị lớn nhất của biểu thức là - \(\dfrac{23}{16}\) xáy ra khi \(x\) = \(\dfrac{5}{8}\)

 

\(A=-3\left(x^2-\dfrac{5}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{13}{36}\right)\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{13}{12}< =\dfrac{13}{12}\)

Dấu = xảy ra khi x=5/6