Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm GTNN của 2x2 + 5x + 7
b) Tìm GTLN của -2x2 + 5x + 7
rất ghét OLM
a) 2x2 + 5x + 7 = 2(x2 + 5/2x + 7/2) = 2(x2 + 2.5/4x + 25/16 + 31/6) = 2[(x + 5/4 )2+31/6] = 2(x+5/4)2 + 31/3
Ta có: 2(x + 5/4)2 >=0
Vậy GTNN là 31/3
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
\(a=15x^3+x^2-mx+n\)
\(=5x\left(x^2+2x-1\right)-3\left(3x^2+2x-1\right)-\left(m-1\right)x-3+n\)
\(\frac{a}{3x^2+2x-1}=5x-3-\frac{\left(m-1\right)x+\left(3-n\right)}{3x^2+2x-1}\)
=> để chia hết : m=1; n=3
\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)
=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)
A/2 = x^2-5/2.x+5/2
= (x^2-5/2.x+25/16) + 15/16
= (x-5/2)^2 + 15/16 >= 15/16
=> A >= 15/16 . 2 = 15/8
Dấu "=" xảy ra <=> x-5/2 = 0 <=> x=5/2
Vậy ............
Tk mk nha