K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

em ko biết làm mới  học lớp 1 mà

8 tháng 3 2018

a) Ta có : abab = ab00 + ab

= 100ab + 1ab

= (100 + 1)ab

=101ab

=> 101ab cha hết cho 101 nhưng không chia hết cho 10201

Vậy abab chia hết cho 101 nhưng không chia hết cho 101^2

Do đó abab không phải là số chính phương.

b) Ta có: abcabc = abc.1001

Để abcabc là số chính phương thì abc chỉ có thể là 1001

Mà abc là số có 3 chữ số

Do đó abcabc không phải là số chính phương

Gia su co so huu ti co binh phuong = 7

Tức a^2=7 ( a = m/n với m,n ngto cùng nhau hay hiểu là ko chia hết cho số nao dc nx)

<=> m^2/n^2=7=> m^2=7n^2 =>m^2 chia hết cho 7 => m chia hết cho 7 => m=7k( k thuộc Z)

=> 49k^2=7n^2<=>7k^2=n^2 => n^2 chia hết cho 7 => n chia hết cho 7 => n = 7t(t thuộc Z)

=> a=m/n = 7k/7t=k/t (vô lí) => ko tồn tại.

20 tháng 7 2017

 giả sử tồn tại số hữu tỉ có bình phương bằng 2 

coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)

ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}

=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2 

CM tương tự vs 3 và 6 nhé

30 tháng 11 2018

n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9

Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3

Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.

Do đó: n2 + 2002 không là số chính phương với mọi n là STN.

15 tháng 4 2016

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

16 tháng 4 2016

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

1 tháng 3 2019

giả sử n^2+2008 là 1 số chính phương

suy ra n^2+2008=a^2(a>0)

a^2-n^2=2008

(a-n)(a+n)=2008

thấy a+n>a-n

suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)

thay vào tìm đc n

nhưng n không là stn

nên n^2+2008 ko là số chính phương vơi n là stn

1 tháng 3 2019

 Đặt   \(n^2+2018=m^2\)

Ta có một  số chính phương chia cho 4 dư 0 hoặc 1

\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)

xét số dư của \(m^2-n^2\)cho 4

ta có bảng 

\(m^2\)             0       1     1    0

\(n^2\)              0         1     0     1

\(m^2-n^2\) 0         0      1     -1

mà \(2018\equiv2\left(mod4\right)\)

mà một số cp chia co 4 dư o hoặc 1

vậy o  tìm đc số thoả mãn

 T I C  K nha!