K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Phải là x4-x3+2x2-x+1=0

Ta có : x4 - x3 + 2x2 - x + 1

= ( x4 + 2x2 + 1 ) - ( x3 + x )

= ( x2 + 1 )2 - x( x2 + 1 )

= (x2 + 1) ( x2 + 1 - x)

vì x2 > 0 và x2-x + 1 > 0

Nên pt đã cho vô nghiệm.

6 tháng 3 2018

ngu thế bài này mà ko bài này ko biết làm

20 tháng 3 2019

7 tháng 5 2021

Ta có P(x) = x3 + 2x2 - 3x + 1

                 = 3x + 4x - 3x +1

                 =       4x + 1

Cho 4x + 1 =0

       4x       = -1

         x       =  -1/4 = -0,25

Vậy P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên là -0,25

NV
17 tháng 9 2020

\(x^3-2mx^2+m^2x+x-m=0\)

\(\Leftrightarrow x\left(x-m\right)^2+x-m=0\)

\(\Leftrightarrow\left(x-m\right)\left(x^2-mx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=m\\x^2-mx+1=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác m

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-m^2+1\ne0\\\Delta=m^2-4>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

Do vai trò của \(x_1;x_3\) là như nhau, ta chỉ cần xét 2 trường hợp:

TH1: \(x_1=m\)\(x_2;x_3\) là nghiệm của 1

\(\Rightarrow m+x_3=2x_2\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_2+x_3=m\\2x_2-x_3=m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{2m}{3}\\x_3=\frac{m}{3}\end{matrix}\right.\)

\(x_2x_3=1\Rightarrow\frac{2m^2}{9}=1\Rightarrow m=\pm\frac{3\sqrt{2}}{2}\)

TH2: \(x_2=m\)\(x_1;x_3\) là nghiệm của (1)

\(\Rightarrow x_1+x_3=2m\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_3=m\\x_1+x_3=2m\end{matrix}\right.\) \(\Leftrightarrow m=0\left(ktm\right)\)

NV
6 tháng 7 2021

a.

\(x^4+x^3+1=\left(\dfrac{x^4}{4}+x^3+x^2\right)+\left(\dfrac{3x^4}{4}-x^2+\dfrac{1}{3}\right)+\dfrac{2}{3}\)

\(=\left(\dfrac{x^2}{2}+x\right)^2+\dfrac{3}{4}\left(x-\dfrac{2}{3}\right)^2+\dfrac{2}{3}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x^3+1=0\) vô nghiệm

b.

\(x^4+x+1=\left(x^4-x^2+\dfrac{1}{4}\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\)

\(=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x+1=0\) vô nghiệm

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:
a. 

$2(x^4+x^3+1)=2x^4+2x^3+2=(x^4+2x^3+x^2)+x^4-x^2+1$

$=(x^2+x)^2+(x^2-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x^3+1>0, \forall x\in\mathbb{R}$

Do đó pt $x^4+x^3+1=0$ vô nghiệm.

b.

$x^4+x+1=(x^4-x^2+\frac{1}{4})+(x^2+x+\frac{1}{4})+\frac{1}{2}$

$=(x^2-\frac{1}{2})^2+(x+\frac{1}{2})^2+\frac{1}{2}\geq \frac{1}{2}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x+1=0$ vô nghiệm (đpcm).

17 tháng 8 2023

\(H\left(x\right)=2x^2-3x+\dfrac{10}{2}\)

\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+5\)

\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{11}{4}\)

\(H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Mà: \(x^2\ge0\forall x\) , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) và \(\dfrac{11}{4}>0\)

\(\Rightarrow H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

Vậy: \(H\left(x\right)\) là đa thức vô nghiệm

10 tháng 8 2023

\(x^4-6x^3+16x^2-22x+16=0\)

\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)

\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)

\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)

\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)

\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)

Vậy phương trình trên vô nghiệm (dpcm)

8 tháng 5 2021

x4+2x2+1 

Ta có :

x4 ≥ 0 ∀ x

x2 ≥ 0 ∀ x => 2x≥ 0 ∀ x

=> x4+2x2+1  ≥ 1 >0

Suy ra đa thức trên vô nghiệm