tính
C=1/2+5/6+11/12+...+2449/2450
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ c,\dfrac{17}{6}-\dfrac{3}{7}-\dfrac{5}{6}=\dfrac{17\times7-3\times6-5\times7}{6\times7}=\dfrac{119-18-35}{42}=\dfrac{66}{42}=\dfrac{11}{7}\\ 2,\\ a,\dfrac{6}{9}+\dfrac{3}{15}+\dfrac{7}{15}\\ =\dfrac{6:3}{9:3}+\dfrac{7+3}{15}\\ =\dfrac{2}{3}+\dfrac{10}{15}\\ =\dfrac{2}{3}+\dfrac{2}{3}\\ =\dfrac{2+2}{3}=\dfrac{4}{3}\)
\(b,\dfrac{7}{2}+\dfrac{29}{12}-\dfrac{11}{12}\\ =\dfrac{7}{2}+\left(\dfrac{29}{12}-\dfrac{11}{12}\right)\\ =\dfrac{7}{2}+\dfrac{29-11}{12}\\ =\dfrac{7}{2}+\dfrac{18}{12}\\ =\dfrac{7}{2}+\dfrac{18:6}{12:6}\\ =\dfrac{7}{2}+\dfrac{3}{2}\\ =\dfrac{7+3}{2}=\dfrac{10}{2}=5\)
\(c,\dfrac{26}{25}-\dfrac{3}{5}-\dfrac{2}{5}\\ =\dfrac{26}{25}-\dfrac{3\times5}{5\times5}-\dfrac{2\times5}{5\times5}\\ =\dfrac{26-15-10}{25}\\ =\dfrac{1}{25}\)
Bài 1:
\(\dfrac{17}{6}-\dfrac{3}{7}-\dfrac{5}{6}=\left(\dfrac{17}{6}-\dfrac{5}{6}\right)-\dfrac{3}{7}=2-\dfrac{3}{7}=\dfrac{14}{7}-\dfrac{3}{7}=\dfrac{11}{7}\)
Bài 2:
a/\(\dfrac{6}{9}+\dfrac{3}{15}+\dfrac{7}{15}\)
\(=\dfrac{2}{3}+\left(\dfrac{3}{15}+\dfrac{7}{15}\right)\)
\(=\dfrac{2}{3}+\dfrac{2}{3}\)
\(=\dfrac{4}{3}\)
b/\(\dfrac{7}{2}+\dfrac{29}{12}-\dfrac{11}{12}\)
\(=\dfrac{7}{2}+\left(\dfrac{29}{12}-\dfrac{11}{12}\right)\)
\(=\dfrac{7}{2}+\dfrac{3}{2}\)
\(=5\)
c/\(\dfrac{26}{25}-\dfrac{3}{5}-\dfrac{2}{5}\)
\(=\dfrac{26}{25}-\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\)
\(=\dfrac{26}{25}-1\)
\(=\dfrac{26}{25}-\dfrac{25}{25}\)
\(=\dfrac{1}{25}\)
#Đang Bận Thở
\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)
\(=5\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\right)=\)
\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\)
\(=5\left(1-\dfrac{1}{50}\right)\)
Ta có
\(1-\dfrac{1}{50}< 1\Rightarrow5\left(1-\dfrac{1}{50}\right)< 5\left(dpcm\right)\)
Sửa đề: A=5/2+5/6+...+5/2450
=5(1/2+1/6+...+1/2450)
=5(1-1/2+1/2-1/3+...+1/49-1/50)
=5*49/50<5
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2450}+\frac{1}{2550}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{49x50}+\frac{1}{50x51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}=\frac{50}{51}\)
\(=>S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(=>S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
vậy S=49/50
C=1-1/2 +1-1/6 +1-1/12 +.............+1-1/2450
=(1+1+1+.........+1)-(1/2 +1/6 +1/12+..............+1/2450)
=49-(1/1.2 +1/2.3 +1/3.4+ ..................+1/49.50)
=49-(1-1/2 +1/2 -1/3+ 1/3- 1/4+............+1/49 -1/50)
=49-(1-1/50) =49-49/50=2401/50