tìm nghiệm là số tự nhiên
a) \(3^x+112=y^2\)
b) \(\left(x^2+1\right)\left(y^2+1\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
\(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
\(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
↔\(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
↔\(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
↔\(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\)→\(\left[\begin{array}{nghiempt}x+y+xy=-6\\x+y+xy=4\end{array}\right.\)
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ\(\left\{\left(0;-6\right),\left(4;-2\right)...\right\}\)
Th còn lại giải tương tự
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow1+x^2y^2+x^2+y^2+4xy+2\left(x+y\right)+2\left(x+y\right)xy=25\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(xy+1\right)=25\)
\(\Leftrightarrow\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)=25\)
\(\Leftrightarrow\left(x+y+xy+1\right)^2=25\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=\pm5\)
Dễ nhé tự lm tiếp
a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)
Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)
Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)
Vì x là nghiệm nguyên nên \(0\le x\le1\)
Do đó x = 0 hoặc x = 1
Nếu x = 0 thì \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)
Nếu x = 1 thì y = -2 (nhận)
Vậy (x;y) = (1;-2)
Đọc là "đen-ta" hay còn gọi là biệt thức. Bạn học sâu hơn về tam thức bậc hai (sách SGK 9 tập hai) để hiểu rõ hơn :)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)\(\)
\(=1+y^2+x^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=x^2+2xy+y^2+x^2y^2+2xy+1+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)\)
\(=\left(x+y+xy+1\right)^2\)