K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{3n - 1}}{n} = \lim \frac{{n\left( {3 - \frac{1}{n}} \right)}}{n} = \lim \left( {3 - \frac{1}{n}} \right) = 3 - 0 = 3\)

b) \(\lim \frac{{\sqrt {{n^2} + 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {1 + \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {1 + \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {1 + \frac{2}{{{n^2}}}}  = 1 + 0 = 1\)

c) \(\lim \frac{2}{{3n + 1}} = \lim \frac{2}{{n\left( {3 + \frac{1}{n}} \right)}} = \lim \left( {\frac{2}{n}.\frac{1}{{3 + \frac{1}{n}}}} \right) = \lim \frac{2}{n}.\lim \frac{1}{{3 + \frac{1}{n}}} = 0.\frac{1}{{3 + 0}} = 0\)

d) \(\lim \frac{{\left( {n + 1} \right)\left( {2n + 2} \right)}}{{{n^2}}} = \lim \frac{{n\left( {1 + \frac{1}{n}} \right).2n\left( {1 + \frac{1}{n}} \right)}}{{{n^2}}} = \lim \frac{{2{n^2}{{\left( {1 + \frac{1}{n}} \right)}^2}}}{{{n^2}}}\)

                                                      \( = \lim 2{\left( {1 + \frac{1}{n}} \right)^2} = 2.{\left( {1 + 0} \right)^2} = 2\)

15 tháng 10 2023

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) =  - 2\)

b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}}  = 4\)

c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)

d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)

NV
6 tháng 2 2021

\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)

\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)

\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)

\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)

6 tháng 2 2021

 E cảm ơn ạ

11 tháng 2 2022

Câu a:

undefined

NV
12 tháng 2 2022

\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)

26 tháng 8 2023

a) \(\lim\limits3=3\) vì \(3\) là hằng số.

Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).

b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).

26 tháng 8 2023

a) \(\lim\limits\dfrac{2n^2+3n}{n^2+1}=\lim\limits\dfrac{n^2\left(2+\dfrac{3n}{n^2}\right)}{n^2\left(1+\dfrac{1}{n^2}\right)}=\lim\limits\dfrac{2+\dfrac{3}{n}}{1+\dfrac{1}{n^2}}=2\).

b) \(\lim\limits\dfrac{\sqrt{4n^2+3}}{n}\\ =\lim\limits\dfrac{\sqrt{n^2\left(4+\dfrac{3}{n^2}\right)}}{n}\\ =\lim\limits\dfrac{\sqrt[n]{4+\dfrac{3}{n^2}}}{n}\\ =\lim\limits\sqrt{4+\dfrac{3}{n^2}}\\ =2.\)

NV
13 tháng 2 2022

\(\lim\dfrac{3+4^n}{1+3.4^{n+1}}=\lim\dfrac{3+4^n}{1+12.4^n}=\lim\dfrac{3\left(\dfrac{1}{4}\right)^n+1}{\left(\dfrac{1}{4}\right)^n+12}=\dfrac{0+1}{0+12}=\dfrac{1}{12}\)

\(\lim\dfrac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}=\lim\dfrac{\left(-2\right)^n+3^n}{-2\left(-2\right)^n+3.3^n}=\lim\dfrac{\left(-\dfrac{2}{3}\right)^n+1}{-2\left(-\dfrac{2}{3}\right)^n+3}=\dfrac{0+1}{0+3}=\dfrac{1}{3}\)