K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

2M = 2+2^3+2^4+......+2^51

M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)

                   = 2+2^51 - 1 - 2^2

                   = 2^51 - 3

=> M < N

Tk mk nha

29 tháng 7 2016

Ta có : M = 1+2+22+23+...+250

=> 2M = 2+22+23+...+251

=> 2M - M = 251 - 1

=> M = 251 - 1

Mà N = 251 => M < N

29 tháng 7 2016

Ta có

M = 1 + 2 + 22 + ... + 250

2M = 2 + 22 + 23 + ... + 251

2M - M = (2 + 22 + 23 + ... + 251) - (1 + 2 + 22 + ... + 250)

M = 251 - 1

Vì 251 - 1 < 251 nên M < N

Vậy M < N

Ủng hộ mk nha !!! ^_^

\(M=1+2+2^2+2^3+...+2^{50}\)

\(\Rightarrow2M=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow M=2M-M=2^{51}-1\)

\(\Rightarrow M< N\left(2^{51}-1< 2^{51}\right)\)

11 tháng 5 2018

M<n

nha

hok tốt

^^

30 tháng 12 2015

\(M=1+2+2^2+...+2^{50}\)

\(\Rightarrow2M=2.\left(1+2+2^2+...+2^{50}\right)\)

\(2M=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2M-M=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)

\(\Rightarrow M=2^{51}-1<2^{51}=N\)

Vậy M < N.

N=1/3*(1-1/7+1/7-1/16+...+1/28-1/43)=1/3*42/43=14/43

M=86/1025

=>M<N

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

5 tháng 9 2021

\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)

8 tháng 6 2017

Ta có :

\(\frac{1}{50}>\frac{1}{100}\)

\(\frac{1}{51}>\frac{1}{100}\)

............

\(\frac{1}{98}>\frac{1}{100}\)

\(\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+....+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}=\frac{50.1}{100}=\frac{1}{2}\)

\(\Rightarrow M>\frac{1}{2}\)

8 tháng 6 2017

Ta có: \(\frac{1}{50}>\frac{1}{51}>....>\frac{1}{99}\)

\(\Rightarrow M>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)

 Vậy M > 1/2