Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
Đặt $A = 1 + 2 + 2^2 + 2^3 + ... + 2^{50}$
$2A = 2 + 2^2 + 2^3 + ... + 2^{51}$
$2A - A = (2 + 2^2 + 2^3 + ... + 2^{51}) - (1 + 2 + 2^2 + ... + 2^{50})$
$A = 2 + 2^2 + 2^3 + ... + 2^{51] - 1 - 2 - 2^2 - ... - 2^{50}$
$A = 2^{51} - 1$
Vậy, `A =` $2^{51} - 1.$
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)
\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)
\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(M=1-\frac{1}{2010^2}< 1\)
Vậy \(M< 1\)
Chúc bạn học tốt ~
Do a + b + c là 3 số tự nhiên chẵn liên tiếp tăng dần
=> a + b + c = a + a + 2 + a + 4
= 3a + 6
= 3 . ( a + 2 )
=> a + b + c = 3 . ( a + 2 )
=> 3 . ( a + 2 ) = 66
=> a + 2 = 22
=> a = 20
Do a,b,c là 3 số tự nhiên chẵn liên tiếp tăng dần nên
=> a = 20 ; b = 22 ; c = 24
Vậy các giá trị khác nhau của dấu hiệu là:
19;20;21;22;23;24
Có các giá trị khác nhau: 19; 20; 21; 22; 23;
Ta có: b = 66 : 3 = 22
a = 22 - 2 = 20
c = 22 + 2 = 24
Vậy: Ta có bảng tần số (sau khi tìm được 3 số a, b, c)
Giá trị (x) | 19 | 20 | 21 | 22 | 23 | |
Tần số (n) | 2 | 7 | 3 | 4 | 3 | N = 19 |
Xong rồi, sai phần nào nhắc mình nhé :v
Ta có:
b = 66 : 3 = 22 (do a,b,c là 3 số chẵn liên tiếp)
=> a = 22 - 2 = 20
c = 22 + 2 = 24
Do a + b + c là 3 số tự nhiên chẵn liên tiếp tăng dần
=> a + b + c = a + a + 2 + a + 4
= 3a + 6
= 3 . ( a + 2 )
=> a + b + c = 3 . ( a + 2 )
=> 3 . ( a + 2 ) = 66
=> a + 2 = 22
=> a = 20
Do a,b,c là 3 số tự nhiên chẵn liên tiếp tăng dần nên
=> a = 20 ; b = 22 ; c = 24
Vậy các giá trị khác nhau của dấu hiệu là:
19;20;21;22;23;24
Ta có : M = 1+2+22+23+...+250
=> 2M = 2+22+23+...+251
=> 2M - M = 251 - 1
=> M = 251 - 1
Mà N = 251 => M < N
Ta có
M = 1 + 2 + 22 + ... + 250
2M = 2 + 22 + 23 + ... + 251
2M - M = (2 + 22 + 23 + ... + 251) - (1 + 2 + 22 + ... + 250)
M = 251 - 1
Vì 251 - 1 < 251 nên M < N
Vậy M < N
Ủng hộ mk nha !!! ^_^