tập nghiệm của bất phương trình: \(3x\left(2x-\sqrt{x^2+3}\right)\ge2\left(1-x^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(log\left(x-5\right)< 2\)
=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)
b: \(log_2\left(2x-3\right)>4\)
=>\(log_2\left(2x-3\right)>log_216\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)
=>2x-3>16
=>2x>19
=>\(x>\dfrac{19}{2}\)
c: \(log_3\left(2x+5\right)< =3\)
=>\(log_3\left(2x+5\right)< =log_327\)
=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< =11\)
d: \(log_4\left(4x-5\right)>=2\)
=>\(log_4\left(4x-5\right)>=log_416\)
=>4x-5>=16 và 4x-5>0
=>4x>=21 và 4x>5
=>4x>=21
=>\(x>=\dfrac{21}{4}\)
e: \(log_3\left(1-3x\right)>3\)
=>\(log_3\left(1-3x\right)>log_327\)
=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)
=>1-3x>27
=>\(-3x>26\)
=>\(x< -\dfrac{26}{3}\)
\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)
\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)
\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)
\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)
\(\Leftrightarrow VT\le2g\left(x\right)\)
Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)
\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)
Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)
Ta có:
\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)
\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy tập nghiệm của pt đã cho có đúng 1 phần tử
\(\Leftrightarrow\sqrt{-x^2-2x+15}-x^2-2x+15\le a+15\)
Đặt \(\sqrt{-x^2-2x+15}=t\ge0\)
Đồng thời ta có: \(\sqrt{-x^2-2x+15}=\sqrt{\left(x+5\right)\left(3-x\right)}\le\dfrac{1}{2}\left(x+5+3-x\right)=4\)
\(\Rightarrow0\le t\le4\)
BPT trở thành: \(t^2+t\le a+15\Leftrightarrow t^2+t-15\le a\) ; \(\forall t\in\left[0;4\right]\)
\(\Leftrightarrow a\ge\max\limits_{t\in\left[0;4\right]}\left(t^2+t-15\right)\)
Xét hàm \(f\left(t\right)=t^2+t-15\) trên \(\left[0;4\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)
\(\Rightarrow f\left(t\right)_{max}=4\Rightarrow a\ge4\)
Đk: \(x\ge\dfrac{1}{2}\)
Bpt\(\Leftrightarrow\left(x^2+2x\sqrt{2x-1}+2x-1\right)-\left[4\left(2x-1\right)+4\sqrt{2x-1}+1\right]\ge0\)
\(\Leftrightarrow\left(x+\sqrt{2x-1}\right)^2-\left(2\sqrt{2x-1}+1\right)^2\ge0\)
\(\Leftrightarrow\left(x-\sqrt{2x-1}-1\right)\left(x+3\sqrt{2x-1}+1\right)\ge0\) (1)
Vì \(x\ge\dfrac{1}{2}\Rightarrow x+3\sqrt{2x-1}+1>0\)
Từ (1) \(\Rightarrow x-\sqrt{2x-1}-1\ge0\)
\(\Leftrightarrow\sqrt{2x-1}\le x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\x-1\ge0\\2x-1\le\left(1-x\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\in R\backslash\left(2-\sqrt{2};2+\sqrt{2}\right)\end{matrix}\right.\)\(\Rightarrow x\ge2+\sqrt{2}\)
Vậy...
1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)
=>-4x<12
hay x>-3
2: \(\Leftrightarrow6+2x+2>2x-1-12\)
=>8>-13(đúng)
4: \(\dfrac{2x+1}{x-3}\le2\)
\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)
=>x-3<0
hay x<3
6: =>(x+4)(x-1)<=0
=>-4<=x<=1
\(pt\Leftrightarrow2x^2\left(x^2+3\right)-3x\sqrt{x^2+3}-2\ge0\Leftrightarrow\orbr{\begin{cases}x\sqrt{x^2+3}\ge2\left(1\right)\\x\sqrt{x^2+3}\le\frac{-1}{2}\left(2\right)\end{cases}}\)
\(bpt\left(1\right)\Leftrightarrow\hept{\begin{cases}x>0\\x^4+3x^2-4\ge0\end{cases}\Leftrightarrow x\ge1}\)
\(bpt\left(2\right)\Leftrightarrow\hept{\begin{cases}x< 0\\x^4+3x^2-\frac{1}{4}\ge0\end{cases}\Leftrightarrow x\le-\sqrt{\frac{-3+\sqrt{10}}{2}}}\)
cho mình hỏi cái bất pt 1 và 2 mình tưởng có hai điều kiện ở bpt đúng ko