Tính
\(P=(1-1/2)(1-1/3)....(1-1/50)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
\(=\frac{1}{2\times\left(2+1\right):2}+\frac{1}{3\times\left(3+1\right):2}+\frac{1}{4\times\left(4+1\right):2}+...+\frac{1}{50\times\left(50+1\right):2}\)
\(=\frac{1}{2}\times\frac{1}{2\times3}+\frac{1}{2}\times\frac{1}{3\times4}+\frac{1}{2}\times\frac{1}{4\times5}+...+\frac{1}{2}\times\frac{1}{49\times50}\)
\(=\frac{1}{2}\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{49\times50}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}\times\frac{12}{25}=\frac{6}{25}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+50}\)
\(=\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+..+\frac{1}{50.\left(50+1\right):2}\)
\(=\frac{1}{2}.\frac{1}{2.3}+\frac{1}{2}.\frac{1}{3.4}+\frac{1}{2}.\frac{1}{4.5}+..+\frac{1}{2}.\frac{1}{49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^{50}}\)
=>\(3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{49}}\)
=>\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{49}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{50}}\right)\)
=>2A=\(1-\frac{1}{3^{50}}\)
=>A=\(\frac{1-\frac{1}{3^{50}}}{2}\)
\(=>A=\frac{1}{2}-\frac{1}{\frac{3^{50}}{2}}=\frac{1}{2}-1.\frac{2}{3^{50}}=\frac{1}{2}-\frac{2}{3^{50}}=\frac{3^{50}-4}{2.3^{50}}\)
Vậy..................
-----A=-1/3+1/3^2-1/3^3+-----+1/3^50-1/...
A*1/3 =-1/3^2+1/3^3+--------------------+1/3^5...
--------A=-1/3+1/3^2-1/3^3+...+1/3^50-1...
-------A*1/3 =-1/3^2+1/3^3+..---------...+1/3^51-1/3^...
---------------------------------------...
A+A*1/3=-1/3+0...+0+...0---------------...
A+A*1/3= -1/3-1/3^52
4/3*A= -1/3-1/3^52
Vậy
A= -(1/3+1/3^52)*3/4.
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{50}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right)...\left(\frac{50}{50}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{49}{50}\)
\(=\frac{1}{50}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{49}{50}\)
\(=\frac{1}{50}\)
Ta có:
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\left(1-\frac{1}{50}\right)\)
Suy ra: \(P=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{49}{50}=\frac{1}{50}\)