C/m 9815\(-\)1 chia hết cho 97
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 97 chia hết cho 5 nhưng không chia hết cho 2;
b) 97 chia hết cho 2 và chia hết cho 5;
c) 97 chia hết cho 2 và chia hết cho 9
d) 97 chia hết cho 2 và chia hết cho 3 nhưng không chia hết cho 9.
a) 975
b) 972;974;976;978
c) 972
d) 975;978
Chắc là đủ hết trơn rồi :)
a) \(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(=2.5+2^5.5+...+2^{97}.5\)
\(=5\left(2+2^5+...+2^{97}\right)\) chia hết cho 5 (1)
b)\(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)\(=2\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 2 (2)
Từ (1) và (2) và (2;5)=1 => S chia hết cho 2.5=10
cho mình hỏi bạn lấy 2.{1+22 }+25 [1+22 ]+.....+297 [1+22 ] ở đâu ra
Bài 1:
a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)
Để \(n+8⋮n\) thì \(8⋮n\)
\(\Rightarrow n\in\left\{1;2;4;8\right\}\)
Vậy.....
b.c tương tự
Bài 2:
a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)
Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)
b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)
Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)
a.Vì 5^n-1 chia hết cho 2 với n thuộc N(sao) => 5^n-1 chia hết cho 2 với n thuộc N(sao).
b.VÌ 97^5-101^100 chia hết cho 5 =>b.97^5-101^100 chia hết cho 5
Ta có : 9815 - 1 = 9815 - 115
\(\Rightarrow98^{15}-1^{15}⋮\left(98-1\right)\)
\(\Rightarrow98^{15}⋮97\)
=> ĐPCM
Áp dụng tính chất a^n - b^n chia hết cho a-b thì :
98^15 - 1 = 98^15 - 1^15 chia hết cho 98-1=97
=> ĐPCM
Tk mk nha