các bn ơi cứu mk!!!
tìm x,y thỏa mãn: x/y=-3/11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y nguyên => (x+1)(xy-1)=3 <=> x+1 và xy-1 thuộc Ư(3)
=> x+1 và xy-1 thuộc các cặp ước (-1;-3);(1;3)
x+1 | 1 | -1 |
x | 0 | -2 |
xy-1 | 3 | -3 |
y | PTVN | 1 |
=> x=-2 và y=1
Vì \(\left(x,y\right)=5\) nên ta có: \(\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà \(xy=825\)
\(\Rightarrow5m.5n=825\)
\(\Rightarrow25m.n=825\)
\(\Rightarrow mn=33\)
\(\left(m,n\right)=1\), ta có bảng sau:
m | 1 | 33 | 3 | 11 |
n | 33 | 1 | 11 | 3 |
x | 5 | 165 | 15 | 55 |
y | 165 | 5 | 55 | 15 |
Vậy \(\left(x;y\right)\in\left\{\left(5;165\right);\left(165;5\right)\left(15;55\right);\left(55;15\right)\right\}\).
<=> x(y+2)=y+5
=> x=\(\frac{y+5}{y+2}=\frac{y+2+3}{y+2}=1+\frac{3}{y+2}\)
=> để x nguyên thì 3 phải chia hết cho y+2.
=> +/ y+2=1 => y=-1 => x=1+3=4
+/ y+2=3 => y=1 => x=1+1=2
xy+2x-y=5
=> x(y+2) - y -2 = 5-2
=> x(y+2) - (y+2) = 5 - 2
=> (y+2)(x-1) = 3
do x, y thuộc Z => y+2 và x-1 thuộc Z
=> y+2 và x-1 thuộc Ư(3)={1,-1,-3,3}
chú ý: e là thuộc nhé
Vậy (x,y) e {(-2;-3);(4;-1);(0;-5);(2;1)}
chúc bạn học giỏi
chắc chắn 100% đó
tk nha
x + y = 9. Vì 22 = 4 + 45 = 72 = 49. Do đó x + y = 2 + 7 + 9
tích nha
Lời giải:
Nếu $y=0$ thì $3^x=2^y+1=2$ (vô lý)
Nếu $y=1$ thì $3^x=2^y+1=3\Rightarrow x=1$
Nếu $y\geq 2$ thì $3^x=2^y+1\equiv 1\pmod 4$
Mà $3^x\equiv (-1)^x\pmod 4$
$\Rightarrow (-1)^x\equiv 1\pmod 4$
$\Rightarrow x$ chẵn. Đặt $x=2k$ thì:
$2^y=3^x-1=3^{2k}-1=(3^k-1)(3^k+1)$
$\Rightarrow$ tồn tại $n>m >0$ tự nhiên sao cho $3^k-1=2^m; 3^k+1=2^n$ với $m+n=y$
$\Rightarrow 2^n-2^m=2$.
$\Rightarrow 2^{n-1}-2^{m-1}=1$
$\Rightarrow 2^{m-1}$ lẻ
$\Rightarrow m=1\Rightarrow n=2$
$\Rightarrow y=m+n=3$
$3^x=1+2^y=1+2^3=9\Rightarrow x=2$
Vậy $(x,y)=(2,3), (1,1)$
=> \(\frac{x}{y}=\frac{-3}{11}\)=> \(x=-\frac{3y}{11}\)
Vậy \(\hept{\begin{cases}y\in R\\x=-\frac{3y}{11}\end{cases}}\)
Ta có :
\(\frac{x}{y}=\frac{-3}{11}\)
\(\Rightarrow\)\(x=-3k\)\(;\)\(y=11k\)\(\left(k\inℤ;k\ne0\right)\)
Vậy ...