K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔACE có

AB=AC
AE chung

BE=CE

Do đo: ΔABE=ΔACE

b: \(\widehat{ABE}=\widehat{ABC}-\widehat{EBC}=80^0-60^0=20^0\)

\(\widehat{EAB}=\dfrac{\widehat{BAC}}{2}=10^0\)

=>\(\widehat{AEB}=150^0\)

 

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

21 tháng 5 2019

A B C D O E 1 1

a) \(\Delta ABC\)cân tại A có \(\widehat{BAC}=40^o\)nên \(\widehat{ABC}=\widehat{ACB}=70^o\)

gọi giao điểm của AB với đường trung trực của nó là O

CM : \(\Delta AOD=\Delta BOD\left(c.g.c\right)\)\(\Rightarrow\)\(\Delta ADB\)cân tại D

\(\Rightarrow\widehat{ABD}=\widehat{BAD}=70^o\)\(AD=BD\)( 1 )

\(\Rightarrow\widehat{A_1}=\widehat{C_1}=180^o-70^o=110^o\)

Xét  \(\Delta BEA\)và  \(\Delta CDA\)có :

AE = CD ( gt ) ; \(\widehat{A_1}=\widehat{C_1}\)( cmt ) ; AB = AC ( gt )

\(\Rightarrow\Delta BAE=\Delta ACD\left(c.g.c\right)\)\(\Rightarrow BE=AD\)( 2 )

b) Từ ( 1 ) và ( 2 ) suy ra BE = BD nên \(\Delta BED\)cân tại B

Mà \(\widehat{ADC}=180^o-2.70^o=40^o\)

\(\Rightarrow\widehat{BED}=\widehat{EDB}=40^o\)và \(\widehat{EBD}=100^o\)

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song

 

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H