Cho a = b + c và c = \(\frac{bd}{b-d}\) \(b\ne0;d\ne0\)
Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(c=\frac{bd}{b-d}\)
\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)
\(a=b+c\Rightarrow c=a-b\)
\(\Rightarrow c=\frac{bd}{b-d}=a-b\)
\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)
\(\Rightarrow ab-ad-b^2+bd=bd\)
\(\Rightarrow a\left(b-d\right)-b^2=0\)
\(\Rightarrow a.\frac{bd}{c}-b^2=0\)
\(\Rightarrow\frac{ad}{c}-b=0\)
\(\Rightarrow\frac{ad-bc}{c}=0\)
\(\Rightarrow ad-bc=0\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Ta có:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Ta có : \(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\)
\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Ta có : \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}\Rightarrow\hept{\begin{cases}b.b=a.c\\c.c=b.d\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}\Rightarrow}\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(1)
mà \(\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)(2)
Từ (1) và (2) => đpcm
\(c=\frac{bd}{b-d}\Rightarrow bc-dc=bd\Rightarrow bc=bd+dc=d\left(b+c\right)\)
Mà \(a=b+c\)nên\(bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{2c}{2d}=\frac{5a}{5b}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU
\(\frac{2a+2c}{2b+2d}=\frac{5a-c}{5b-d}\)
MÌNH SỬA LẠI ĐỀ LÀ 3D THÀNH 2D NHÉ
Ta có: a=b+c => ad=(b+c)d = bd+cd (*)
Lại có: c= \(\frac{bd}{b-d}\) => bd=c(b-d)=bc-cd hay bc=bd+cd (**)
Từ * và ** => \(\frac{a}{b}=\frac{b}{d}\) (đpcm)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
Vậy.............
\(c=\frac{bd}{b-d}\)
=> c(b - d) = bd
=> bc - cd = bd
=> bc = bd + cd
=> bc = d(b + c)
=> bc = ad
=> \(\frac{a}{b}=\frac{c}{d}\)
cảm ơn bạn nhiều nhiều !!!!!!!!!!!!!!!!!