K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(c=\frac{bd}{b-d}\)

=> c(b - d) = bd

=> bc - cd = bd

=> bc = bd + cd

=> bc = d(b + c)

=> bc = ad

=> \(\frac{a}{b}=\frac{c}{d}\)

8 tháng 10 2017

cảm ơn bạn nhiều nhiều !!!!!!!!!!!!!!!!!

6 tháng 10 2019

Ta có :

\(c=\frac{bd}{b-d}\)

\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)

\(a=b+c\Rightarrow c=a-b\)

\(\Rightarrow c=\frac{bd}{b-d}=a-b\)

\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)

\(\Rightarrow ab-ad-b^2+bd=bd\)

\(\Rightarrow a\left(b-d\right)-b^2=0\)

\(\Rightarrow a.\frac{bd}{c}-b^2=0\)

\(\Rightarrow\frac{ad}{c}-b=0\)

\(\Rightarrow\frac{ad-bc}{c}=0\)

\(\Rightarrow ad-bc=0\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

A/B=C/D <=>A/C=B/D

THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ

A/C=B/D=A+B/C+D=A-B/C-D

=>A+B/C+D=A-B/C-D

=>A+B/A-B=C+D/C-D =>ĐPCM

15 tháng 6 2018

giải cả ra nhé

4 tháng 9 2016

Ta có :

\(c=\frac{bd}{b-d}\Leftrightarrow bc-cd=bd\)

\(\Rightarrow bc=d\left(b+c\right)\)

\(\Rightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Vậy ...

26 tháng 7 2016

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\left(a+b\right).\left(c-d\right)=\left(a-b\right).\left(c+d\right)\)

Chia hai vế cho \(\left(a-b\right).\left(c-d\right)\)

\(\Rightarrow\frac{\left(a+b\right).\left(c-d\right)}{\left(a-b\right).\left(c-d\right)}=\frac{\left(a-b\right).\left(c+d\right)}{\left(a-b\right).\left(c-d\right)}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

26 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow ac-ad+ba-bd=ab-bc+ad-db\) (luôn đúng)