Cho a;b;c>0 thỏa a+b+c=3
CMR: \(\frac{a+b}{\sqrt{a^2+b^2+6c}}+\frac{b+c}{\sqrt{b^2+c^2+6a}}+\frac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
\(\sqrt{a^2+b^2+6c}=\sqrt{a^2+b^2+2c\left(a+b+c\right)}\)
\(=\sqrt{a^2+b^2+2c^2+2bc+2ca}=\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}\)
\(\Rightarrow\frac{a+b}{\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}}=\sqrt{\frac{\left(a+b\right)^2}{\left(a+c\right)^2+\left(b+c\right)^2}}\)
Đặt \(\left(\left(a+b\right)^2;\left(b+c\right)^2;\left(c+a\right)^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P=\sum\sqrt{\frac{x}{y+z}}\)
Đến đây thì dễ rồi, bài toán cơ bản
\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\Rightarrow\frac{x\sqrt{y+z}}{\sqrt{x}}\le\frac{x+y+z}{2}\Rightarrow\sqrt{\frac{y+z}{x}}\le\frac{x+y+z}{2x}\)
\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\Rightarrow P\ge\sum\frac{2x}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(P>2\)