Cho \(a;b;c>0\) và \(a+b+c=6\)
Tìm GTNN của \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Giúp gấp, mai cần rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
ta có A=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
ta có \(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+...=\frac{1}{a^2+b^2+c^2}+\frac{\frac{2}{3}}{2ab}+...\ge\frac{\left(1+3.\sqrt{\frac{2}{3}}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=....\)
đến đây thì dễ rồi, cái kia cũng svacxơ và chú ý ab+bc+ca<=(a+b+c)^2/3
mượn chỗ nhok chút!
Áp dụng bđt bu nhi a, ta có
\(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)
mà \(\sqrt{2\left(x-y\right)^2+10x-6y+8}=\sqrt{2\left(x^2-2xy+y^2+5x-3y+4\right)}\)
=\(\sqrt{2\left(x-y+2\right)^2+2\left(x+y\right)}\ge\sqrt{2\left(x+y\right)}\)
=>VT<=VP
dấu = xảy ra <=> y=x+2
với x=y-2, thay vào A, ta có
A=\(x^4+\left(x+2\right)^2-5\left(x+x+2\right)+2020=x^4+x^2+4x+4-10x-10+2020\)
=\(x^4+x^2-6x+2014=x^4-2x^2+1+3\left(x^2-2x+1\right)+2010\)
=\(\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)
dấu = xảy ra <=> x=1 và y=3