K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

25 tháng 4 2019

Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)

\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)

Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)

Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25

Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)

\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)

Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5

Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5

Thử lại : \(\frac{1}{8}=0,125\)

9 tháng 9 2023

A) xyz = 100x + 10y + z

xyzt = 1000x + 100y + 10z + t

B) xyzz + zyx

= 1000x + 100y + 10z + z + 100z + 10y + x

= 1001x + 110y + 111z

9 tháng 9 2023

thanks

20 tháng 3 2020

các bạn trả lời đầy đủ hộ mình nha mình xin cảm ơn