Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/2 = y/3 = z/4 = k => x = 2k ; y = y = 3k và z = 4k
Ta có : x.y.z = 216 => 2k.3k.4k = 216 => 24k3 = 216 => k3 = 9 => k = \(\sqrt[3]{9}\)
Với k = \(\sqrt[3]{9}\)=> x = 2.\(\sqrt[3]{9}\); y = 3.\(\sqrt[3]{9}\)và z = 4.\(\sqrt[3]{9}\)
Vậy ....
PS : kq bài này hơi lẻ nha
áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\)=\(\frac{x+y+z}{2+3+4}\)=\(\frac{216}{9}\)=24
suy ra : 2 * 24 = 48
3 * 24 =72
4 * 24 = 96
\(\frac{1}{x+y+z}=0,xyz=>\left(\frac{1}{x+y+z}\right).1000=0,xyz.1000=>\frac{1000}{x+y+z}=xyz\)
\(=>xyz.\left(x+y+z\right)=1000\),tới đây tự lm tiếp
1a Để \(\frac{x+1}{2}\)=\(\frac{8}{x+1}\)
\(\Rightarrow\)x+1.(x+1)=2.8=16
\(\Rightarrow\)x+1(x+1)=4.4
suy ra x+1=4
x=4-1
x=3
Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)
\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)
Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)
Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25
Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)
\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)
Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5
Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5
Thử lại : \(\frac{1}{8}=0,125\)