Cho \(a=x^3-3x^2+5x;b=y^3-3y^2+5y.\) Biết a+b=6.Tính x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)
=>a-2=0
=>a=2
d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)
\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)
Để dư bằng -3 thì -a-1=-3
=>a+1=3
=>a=2
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
Để tìm đa thức B(x), ta cần lấy A(x) trừ đi đa thức 2x^3 - x^2 + 3x + 1
A(x) - (2x^3 - x^2 + 3x + 1) = (-3x^3 + 4x + 5x^3 + x^2 - 8x-2)- (2x^3-x^2 + 3x + 1)
=-3x^3 + 4x + 5x^3 + x^2 - 8x-2- 2x^3 + x^2-3x-1
= 2x^3 + 6x
Vậy đa thức B(x) = -2x^3 - 6x.
a) \(A\left(x\right)=3x^3-4x^4-2x^3+4x^4-5x+3\)
\(\Rightarrow A\left(x\right)=-4x^4+4x^4+3x^3-2x^3-5x+3\)
\(\Rightarrow A\left(x\right)=x^3-5x+3\)
\(B\left(x\right)=5x^3-4x^2-5x^3-4x^2-5x-3\)
\(\Rightarrow B\left(x\right)=5x^3-5x^3-4x^2-4x^2-5x-3\)
\(\Rightarrow B\left(x\right)=-8x^2-5x-3\)
b) \(A\left(x\right)+B\left(x\right)=x^3-5x+3+\left(-8x^2-5x-3\right)\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-5x+3-8x^2-5x-3\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-5x-5x+3-3\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-10x\)
\(A\left(x\right)-B\left(x\right)=x^3-5x+3-\left(-8x^2-5x-3\right)\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3-5x+3+8x^2+5x+3\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2-5x+5x+3+3\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2+6\)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Ta có: \(a=x^3-3x^2+5x\)
\(< =>a=\left(x^3-3x^2+3x-1\right)+2x+1\)
\(< =>a=\left(x-1\right)^3+2x+1\)
Tương tự: \(b=\left(y-1\right)^3+2y+1\)
Do đó: \(a+b=\left(x-1\right)^3+\left(y-1\right)^3+2x+2y+2=6\)
\(< =>\left(x-1\right)^3+\left(y-1\right)^3+2x+2y-4=0\)
\(< =>\left(x-1\right)^3+\left(y-1\right)^3+2.\left(x-1\right)+2.\left(y-1\right)=0\)
Đặt x-1=c, y-1=d
\(=>c^3+d^3+2c+2d=0\)
\(< =>\left(c+d\right).\left(c^2-cd+d^2\right)+2\left(c+d\right)=0\)
\(< =>\left(c+d\right).\left(c^2-cd+d^2+2\right)=0\)
Vì \(c^2-cd+d^2+2>0< =>c^2-cd+d^2+2\ne0\)
<=>c+d=0
<=>x-1+y-1=0
<=>x+y=2
Vậy x+y=2