Các bạn ơi giúp mình bài này với:Cho tam giác ABC có góc A=90 độ,C=30 độ.Kẻ đg cao AH.lấy M thuộc HC sao cho BH=HM.Kẻ CE vuông góc AM.CM rằng:a,Tam giác ABM đều;b,AH=CE;c,HM<MC;d,Kéo dài AH cắt CE tại K .CM KM vuông góc AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy :
Xét ∆ABM ta có :
AH là trung trực BM
=>∆ ABM cân tại A
Mà B = 60°
=> ∆ABM đều
a) Xét ΔAHB và ΔDBH có:
HB chung
AHB = DBH (= 90)
AH = DB (gt)
=> ΔAHB = ΔDBH ( c.g.c )
b) Vì ΔAHB = ΔDBH ( theo câu a)
nên ABH = BHD ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AB // DH
c) Ta có góc ABH + BAH = 90 độ ( tc tg vuông )
=> ABH + 35 = 90
=> ABH = 55 độ hay ABC = 55
Áp dụng tc tổng 3 góc trong 1 tg ta có:
BAC + ABC + BCA = 180
=> 90 + 55 + BCA = 180
=> ACB = 35 độ
bạn tự vẽ hình nhé
a) ta có:
trong tam giác ABC:
 + góc B + góc C = 180
90 độ + góc B + 30 độ = 180 độ
=> góc B = 180 độ - 90 độ - 30 độ = 60 độ (1)
xét 2 tam giác vuông: ABH và ADH, có:
AH là cạnh chung
HD = HB (gt)
=> tam giác ABH = ADH (cạnh huyền - cạnh góc vuông)
=> AB = AD (2 cạnh tương ứng)
=>tam giác ABD cân tại A (2)
từ (1) , (2):
=> tam giác ABD đều (tam giác cân có 1 góc bằng 60 độ)
b)tam giac abd deu nên dab =60 dộ
cad+dab=90 suy ra cad+60=90 suy ra cad=90-60=30
tam giác cda có dca=dac=30 do suy ra tm giác cda cân tại d suy ra cd=da
cmd tam giác cah=ace((ch.gn)
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
a) Xét ΔABM có:
AH vừa là đường cao(gt), vừa là đường trung tuyến(vì BH=HM)
=> ΔABH cân tại A (1)
Xét ΔABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\) (định lý tông 3 góc trong 1 tam giác)
=> \(\widehat{ABC}=180-\widehat{BAC}-\widehat{ACB}=180-90-30=60\) (2)
Từ (1),(2) suy ra: ΔABD đều
Mk giải tóm tắt nha!
a, A=90; C=30 => B=60
Tg ABH=AMH (c.g.v) => AB=AM
=> tg ABM cân tại A
Mà B=60 => Tg ABM đều.
b, Tg AHM=CEM (c.h-g.n)
=> AH=CE
c, Theo câu b, Tg AHM=CEM => HM=ME
Mà ME<MC => HM<MC
(hoặc HM=1/2. BM=1/2.CM)
d, Cm M là trực tâm của Tg AKC