CHO ac=b2;ab=c2;a+b+c\(\ne\) 0và a,b,c là các số khác 0
TÍNH GIÁ TRỊ BIỂU THỨC :P=\(\frac{A^{555}}{B^{222}.C^{333}}\)+\(\frac{B^{555}}{C^{222}.A^{333}}\)+\(\frac{C^{555}}{A^{222}.B^{333}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=> ( a + b ) ( c -a ) = ( a + c ) ( a - b )
=> a ( c - a ) + b ( c - a ) = a ( a - b ) + c ( a - b )
=> ac - aa + bc - ba = aa - ab + ca - bc
=> - aa - aa = - bc - bc
=> - 2 a 2 = - 2 bc
=> a 2 = bc
Vậy \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)thì a 2 = bc
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\\ \dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
Đề sai rồi bạn. Phải thay "^2" bằng "^3" mới đúng.
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)
\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta đặt: a/b = a/d =k
=> a = b.k, c=d.k
Ta có: a2 + a.c/c2 - a.c=b2 + b.d/d2 - b.d
Vế trái: => (b.k)2 + (b.k)(d.k)/(d.k)2 - (b.k)(d.k)
=> b2.k2 + k(b.d)/d2.k2 - k.(b.d)
Ta lược bỏ các chữ giống nhau, ta được:
=> b2/d2
Vế phải: b2 +b.d/d2 - b.d
Ta cũng lược bỏ những chữa giống nhau ta được:
=> b2/d2
Vậy a2 +a.c/c2 + a.c = b2 + b.d/d2 - b.d
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)