K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

27 tháng 1 2022

\(1\)

⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)

\(2\)/

\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)

\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)

2 tháng 2 2016

a. Đặt VP = ( a2 + b2)(c2 + d2)

VT = (ac + bd)2 + ( ad - bc)2 = a2c2 + 2abcd  + b2d2 + a2d2 - 2abcd + b2c2 = a2c2  + b2d2 + a2d2  + b2c = a2(c+ d2) + b2 (c2 + d2) = ( c+ d2) (a2 + b) = VP ( ĐPCM)

Xíu mình nghiên cứu câu b nha!

2 tháng 2 2016

theo phan a \(\Rightarrow\text{(ac+bd)^2\le(a^2+b^2)(c^2+d^2)}\)

dau "=" xay ra <=> ad-bc=0 <=>\(\frac{a}{b}=\frac{c}{d}\)

10 tháng 12 2018

Khi đập đầu vào tường thì độ to của khối u tỉ lệ thuận với độ ngu của khối óc.

Xong rồi :3

10 tháng 12 2018

og duy tui hỏi tí

17 tháng 7 2015

G/s căn 7 là số hữu tỉ => căn 7 viết dưới dạng phân số tói giản a/b ( trong đó UCLN (a,b) = 1)

=> căn 7 = a/b => 7 = a^2 / b^2 => 7b^2 = a^2 => a^2 chia hết cho 7 => a chia hết cho 7 (1)

DẶt a = 7t thay a =7t vào a^2 = 7b^2 

 => 49 t^2 = 7b^2 => b^2 = 7 t^2 => b^2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => a,b có một ước chung là 7 trái với g/s UCLN (a,b) = 1 

Vậy căn 7 là số vô tỉ 

29 tháng 11 2018

Câu 1:

 \(\text{Ta có : }x+y=2\Leftrightarrow x=y-2\)

\(\text{Thay vào S ta đc: }\)

\(S=\left(y-2\right)^2+y^2\)

\(=y^2-4y+4+y^2\)

\(2S=4y^2-8y+8\)

\(=4\left(y-2\right)^2+4\)

\(\Rightarrow S=2\left(y-2\right)^2+2\ge2\)

\(\text{Vậy Min S = 2 }\)

17 tháng 5 2018

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7= m/n 
⇒ 7 = m²/n² 
⇒ m² =7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ. 

17 tháng 5 2018

b,

Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0

Dấu " = " xảy ra khi {\displaystyle {\frac {a}{c}}={\frac {b}{d}}}{\displaystyle {\frac {a}{c}}={\frac {b}{d}}}

câu  2 câu 3 nè 

2) a) (ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)

b) Chuyển vế rồi khai triển, search trên mạng cũng có

3) Áp dụng BĐT Bunyakovsky, ta có:

x2+y2≥(x+y)22=222=2

4 tháng 3 2020

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7