Tìm giá trị lớn nhất của C= \(\left(\sqrt{a}+\sqrt{b}\right)^2\) với a,b>0; a+b <= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)
Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)
Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Cộng các vế lại, ta được :
\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)
\(\Rightarrow B\le6\)
Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)
Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)
\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)
Cộng theo vế của (1);(2)&(3) ta đc:
A\(\le1\)
Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c
Ta có: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\)=\(2a+2b\le2\)
\(Max\)\(M=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+\sqrt{b}\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow a=b=\dfrac{1}{2}\)
\(M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2;a+b\le1\left(a;b>0\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số \(\left(1;\sqrt[]{a}\right);\left(1;\sqrt[]{b}\right)\)
\(M=\left(1.\sqrt[]{a}+1.\sqrt[]{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\) \(\left(a+b\le1\right)\)
\(\Rightarrow M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2\le2\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{1}{\sqrt[]{a}}=\dfrac{1}{\sqrt[]{b}}\Leftrightarrow a=b=1\)
\(\Rightarrow GTLN\left(M\right)=2\left(khi.a=b=1\right)\)
- Bổ sung điều kiện: \(a,b,c>0\)
Ta chứng minh bất đẳng thức:
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (bạn tự chứng minh bằng phép biến đổi tương đương)
Áp dụng bất đẳng thức trên ta có:
\(P=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le3\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)
\(=6\left(a+b+c\right)=6.3=18\)
\(\Rightarrow P\le\sqrt{18}=3\sqrt{2}\)
Dấu "=" xảy ra khi a=b=c=1.
Vậy \(MinP=\sqrt{18}\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)
\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)
\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)
\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)
\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)
\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)
\(\Rightarrow p\le2\sqrt{2}\)
Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)
Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)
a/ \(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
=> \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b/ Nếu 0<x<1 => \(\sqrt{x}-1< 0\); và \(\sqrt{x}>0\)
=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)>0\)
c/ \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+2.\frac{1}{2}\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)
=> \(P=\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\le\frac{1}{4}\)
=> \(P_{max}=\frac{1}{4}\)
Đạt được khi x=1/4
Lời giải:
Ta thấy \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0\)
\(\Rightarrow a+b\geq 2\sqrt{ab}\)
\(\Rightarrow 2(a+b)\geq a+b+2\sqrt{ab}\)
\(\Rightarrow 2(a+b)\geq (\sqrt{a}+\sqrt{b})^2\)
Hay \(C=(\sqrt{a}+\sqrt{b})^2\leq 2(a+b)\leq 2.1=2\)
Vậy \(C_{\max}=2\Leftrightarrow a=b=\frac{1}{2}\)
Ta có:
\(a+b\le1\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2-2\sqrt{ab}\le1\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le1+2\sqrt{ab}\)(1)
Mặt khác:
\(a+b\ge2\sqrt{ab}\)(co-si, dấu = xảy ra khi a=b)
\(\Rightarrow1\ge2\sqrt{ab}\)(2)
Từ (1) và (2)
=>\(\left(\sqrt{a}+\sqrt{b}\right)^2\le1+1\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le2\Rightarrow C\le2\)
Vậy Min \(C=2\Leftrightarrow a=b=\dfrac{1}{2}\)