K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

theo bài ra ta có: \(c^2+2ab-2bc-2ca=0.\)

\(\Rightarrow2\left(c^2+ab-bc-ca\right)=c^2\)

\(\Rightarrow2\left(a-c\right)\left(b-c\right)=c^2\)

Mặt khác: \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{2a\left(a-c\right)+2\left(a-c\right)\left(b-c\right)}{2b\left(b-c\right)+2\left(a-c\right)\left(b-c\right)}\)

                                                                               \(=\frac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\frac{a-c}{b-c}\) => đpcm

17 tháng 4 2022

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

-Ta có hằng đẳng thức: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(P=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}+2bc+2ca+2ab\)

\(=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}=\dfrac{2\left(b^3c^3+c^3a^3+a^3b^3\right)}{a^2b^2c^2}=\dfrac{2.\left(ab+bc+ca\right)\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=\dfrac{2.0.\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=0\)

17 tháng 4 2022

-C/m hằng đẳng thức trên:

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\left(đpcm\right)\)

6 tháng 12 2019

Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)

Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )

\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0 

Áp dụng BĐT Cô -si cho 3 số không âm:

\(m+n+p\ge3\sqrt[3]{mnp}\)

và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)

\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)