Cho dãy số (un) có d = –2; S8 = 72. Tính u1 ?
A. u 1 = − 8
B. u 1 = 16
C. u 1 = 4
D. u 1 = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(U_n\) có chữ số tận cùng là 2 thì \(5n+2\) có chữ số tận cùng là 2
=>5n có chữ số tận cùng là 0
=>n chẵn
=>\(U_n=5n⋮10\)
Số lượng số hạng \(U_n\) chia hết cho 10 khi \(960< U_n< 6900\) là:
\(\dfrac{\left(6900-960\right)}{10}+1-2=595-2=593\left(số\right)\)
Chọn C
1. u n = 3 n + 1 2. u n = 4 − 5 n
3. u n = 2 n + 3 5 4. u n = n + 1 n
* Xét dãy số: u n = 3 n + 1
Ta có:
u n + 1 − u n = 3 ( n + 1 ) + 1 − 3 n − 1 = 3
Dãy số này là cấp số cộng có công sai d= 3.
* Xét dãy số u n = 4 − 5 n .
Ta có:
u n + 1 − u n = 4 − 5 ( n + 1 ) − ( 4 − 5 n ) = − 5
Dãy số này là cấp số cộng có công sai d = -5
* Xét dãy số u n = 2 n + 3 5
Ta có:
u n + 1 − u n = 2 ( n + 1 ) + 3 5 − 2 n + 3 5 = 2 5 .
Dãy (un) là cấp số cộng có công sai d = 2 5
* Xét dãy số u n = n + 1 n
Ta có:
u n + 1 − u n = n + 1 + 1 n + 1 − n + 1 n = ( n + 2 ) . n − ( n + 1 ) 2 n . ( n + 1 ) = − 1 n ( n + 1 ) ⇒ ( u n )
không là cấp số cộng
Đáp án D
Các dãy số (hữu hạn hoặc vô hạn) với số hạng tổng quát có dạng an+b ( a, b là hằng số) đều là một cấp số cộng với công sai d = a
Đáp án C
Ta có
u n = u 1 = n − 1 d u n + 1 = u 1 + n d ⇒ u n + 1 = u 1 + n d − u 1 − n − 1 d = d .
Vậy u n là dãy số tăng nên suy ra
u n + 1 − u n > 0 ⇔ d > 0.
Chọn A
1) Xét dãy số : u n = − 3 n − 1 5
u n + 1 u n = − 3 n + 1 − 1 5 : − 3 n − 1 5 = 3 ⇒ ( u n ) Ta có: là cấp số nhân với công bội q= 3.
(2). Xét dãy số: un = 3n - 1
Ta có: u n + 1 u n = 3 ( n + 1 ) − 1 3 n − 1 = 3 n + 2 3 n − 1 ⇒ ( u n ) không phải là cấp số nhân.
( 3) Xét dãy số : u n = 2 n − 1 3
Ta có: u n + 1 u n = 2 n + 1 − 1 2 n − 1 ⇒ ( u n ) không phải là cấp số nhân
(4) xét dãy số un = n3
Ta có: u n + 1 u n = ( n + 1 ) 3 n 3 ⇒ ( u n ) không phải là cấp số nhân
Chọn D.
S n = n 2 u 1 + n − 1 d 2
⇔ 2.483 = n . 2. ( − 1 ) + n − 1 .2 ⇔ 966 = n ( 2 n − 4 ) ⇔ 2 n 2 − 4 n − 966 = 0 ⇔ n = 23 n = − 21
Chọn B
Ta có S 8 = n 2 . [ 2 u 1 + ( n − 1 ) d ]
⇒ 72 = 8 2 . [ 2. u 1 + ( 8 − 1 ) . ( − 2 ) ] ⇔ 72 = 4 . (2u 1 − 14 ) ⇔ 18 = 2 u 1 − 14 ⇔ 2 u 1 = 32 ⇔ u 1 = 16