K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: \(EM\cdot AM=MF\cdot OA\)

\(\widehat{EMO}=\widehat{EMF}+\widehat{OMF}\)

=>\(\widehat{EMF}+\widehat{OMF}=90^0\)(1)

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMO}+\widehat{FMO}=\widehat{AMF}=90^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EMF}=\widehat{AMO}\)

=>\(\widehat{EMF}=\widehat{OAM}\)

ΔMEO vuông tại M

=>\(\widehat{MEO}+\widehat{MOE}=90^0\)

=>\(\widehat{MEF}+\widehat{MOE}=90^0\)(3)

Ta có: OM nằm giữa OA và OE

=>\(\widehat{AOM}+\widehat{MOE}=90^0\)(4)

từ (3) và (4) suy ra \(\widehat{MEF}=\widehat{AOM}\)

Xét ΔMEF và ΔAOM có

\(\widehat{MEF}=\widehat{AOM}\)

\(\widehat{EMF}=\widehat{OAM}\)

Do đó: ΔMEF đồng dạng với ΔAOM

=>ME/AO=MF/AM

=>\(ME\cdot AM=AO\cdot MF\)

b: Xét (O) có

ΔAIB nội tiếp

AB là đường kính

Do đó: ΔAIB vuông tại I

=>AI\(\perp\)SB

Xét ΔSAB có

BM,SO là đường cao

BM cắt SO tại F

Do đó; F là trực tâm

=>AF\(\perp\)SB

mà AI\(\perp\)SB(cmt)

và AF,AI có điểm chung là A

nên A,I,F thẳng hàng

 

3 tháng 3 2018

14 tháng 6 2019

 Đáp án D

29 tháng 10 2023

 a) Tam giác ABM vuông tại A có đường cao AC nên \(BC.BM=BA^2\). CMTT, \(BD.BN=BA^2\) nên \(BC.BM=BD.BN\Leftrightarrow\dfrac{BM}{BD}=\dfrac{BN}{BC}\). Từ đây dễ dàng suy ra \(\Delta BNM~\Delta BCD\left(c.g.c\right)\) (đpcm)

 b) Ta có OQ//BN, OP//BM, mà \(MB\perp NB\) nên suy ra \(OP\perp BN\), từ đó O là trực tâm tam giác BPN.\(\Rightarrow ON\perp BP\)

 Lại có \(QH\perp BP\) nên QH//ON.

Tam giác AON có Q là trung điểm AN, QH//ON nên H là trung điểm OA \(\Rightarrow AH=\dfrac{OA}{2}=\dfrac{R}{2}\) không đổi.

19 tháng 10 2020

Gọi MP, QP cắt AB tại K, L

Ta chứng minh được PQ vuông góc AB

\(\Delta\)AON đồng dạng \(\Delta\)APB suy ra \(AN=AM=\sqrt{OA^2+OM^2}=\frac{R\sqrt{5}}{2}\)

\(\frac{AO}{AP}=\frac{ON}{PB}=\frac{AN}{AB}\Rightarrow\frac{R}{AP}=\frac{\frac{R}{2}}{PB}+\frac{\frac{R\sqrt{5}}{2}}{2R}=\frac{\sqrt{5}}{4}\Rightarrow AP=\frac{4R\sqrt{5}}{5};BP=\frac{2R\sqrt{5}}{5}\)

Ta có

\(BP^2=BL.AB\Rightarrow BL=\frac{BP^2}{AB}=\frac{2R}{5};OL=OB-BL=\frac{3R}{5};PL=\sqrt{BP^2-BL^2}=\frac{4R}{5}\)\(\frac{KL}{OK}=\frac{KP}{MK}=\frac{PL}{OM}=\frac{\frac{4R}{5}}{\frac{R}{2}}=\frac{8}{5}\Rightarrow\frac{KL}{8}=\frac{OK}{5}=\frac{OL}{13}=\frac{\frac{3R}{5}}{13}=\frac{3R}{65}\Rightarrow KL=\frac{24R}{65};OK=\frac{3R}{13}\)

\(MP=MK+KP=\sqrt{OM^2+OK^2}+\sqrt{KL^2+PL^2}=\frac{\sqrt{205}R}{10}\)

có \(MP=\frac{\sqrt{205}R}{10},AP=\frac{4R\sqrt{5}}{5};AM=\frac{R\sqrt{5}}{2}\)

\(AM^2+MP^2\ne AP^2\)nên MA không vuông góc MP

22 tháng 10 2020

Sorry, vừa rồi mình nhầm O với giao điểm của AB với QN.

Mình sửa lại như sau: Gọi H là giao của QN và AB, F là giao của AB và QP. Từ P vẽ PK vuông góc với CD tại K. 

Giả sử AQ vuông góc với MP suy ra H là trực tâm tam giác AQP. Suy ra BH = 2 . BF.

Vì HN song song với BP và PK // AO ta có đẳng thức sau:

NK/NO = PK / AO = NP/NA = BH/HA

suy ra

(r-KD)/(r/2) = (r-BF)/r = 2BF/(2r-2BF)

ở đó r là bán kính đường tròn (O). Ngoài ra ta còn có BF.(2r-BF) = PF^2 = (r-KD)^2

Từ đó rút ra điều vô lý.

23 tháng 10 2019

a, Học sinh tự chứng minh

b, Chứng minh: A F M ^ = C A F ^ ( = A C F ^ ) => MF//AC

c, Chứng minh:  M F N ^ = M N F ^ => ∆MNF cân tại M => MN = MF

Mặt khác: OD = OF = R

Ta có MF là tiếp tuyến nên DOFM vuông => ĐPCM

29 tháng 8 2023

Đầu tiên, với điều kiện AC^2 = BC, ta có thể suy ra AC = BC. Do đó, tam giác ABC là tam giác cân tại A và B.

Tiếp theo, vì CD vuông góc AB, ta có thể suy ra tam giác ACD và tam giác BCD là tam giác vuông.

Do DE là đường kính của đường tròn O, nên tam giác ADE và tam giác BDE là tam giác vuông tại D và E.

Vì tam giác ABC là tam giác cân, ta có thể suy ra tỉ số diện tích DCE và ABD bằng tỉ số diện tích tam giác DCE và tam giác ABD.

Tuy nhiên, để tính diện tích của các tam giác này, chúng ta cần biết thêm thông tin về kích thước của các đoạn thẳng và góc giữa chúng.

Vì vậy, để tìm tỉ số diện tích DCE và ABD, cần có thêm thông tin chi tiết về hình học của hình và các giá trị số cụ thể.

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp