VẼ HÌNH GIÚP EM VỚI Ạ
Cho(O;R),dây BC=R căn 3.Gọi A là một điểm trên cung lớn BC.
a)Tính góc ở tâm BOC.
b)Tính góc BAC.
c)Phân giác góc A cắt BC ở D,cắt đường tròn ở M.Chứng minh MC^2=MD.MA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn vẽ hai đường chéo và chúng cắt nhau tại trung điểm của mỗi đường và vuông góc nhé.
Ta có: ABCD là hình thoi => \(AC\perp BD\)
\(AC\cap BD=\left\{O\right\}\)
Xét △AOB có:
\(AB^2=AO^2+OB^2\left(Pytago\right)\)
\(\Rightarrow AB^2=7^2+11^2\)
\(\Rightarrow AB=\sqrt{7^2+11^2}\approx13\left(cm\right)\)
Gọi giao điểm của AP với BD là M
Xét ΔABD có
P là trọng tâm
M là giao điểm của AP với BD
Do đó: M là trung điểm của BD
Xét ΔDBC có
M,Q lần lượt là trung điểm của DB,DC
=>MQ là đường trung bình
=>MQ//BC
Chọn mp(AQM) có chứa PQ
Xét (AQM) và (ABC) có
\(A\in\left(AQM\right)\cap\left(ABC\right)\)
MQ//BC
Do đó: (AQM) giao (ABC)=xy, xy đi qua A và xy//MQ//BC
Gọi giao của PQ với xy là K
=>K là giao điểm của PQ với mp(ABC)
a/ Xét △ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
- AM là đường trung tuyến của △ABC vuông tại A
\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)
\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)
Vậy: \(AM=5cm\)
==========
b/ Tứ giác ABNC là hình chữ nhật vì:
- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)
⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)
- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\)
Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)
==========
c/ Ta có:
- \(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)
⇒AC là đường trung trực của MK \(\left(1\right)\)
- Mặt khác:
-Xét △CIM và △AIM có:
+ \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)
+ \(IM\text{ }chung\)
+\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)
⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)
\(\Rightarrow IA=IC\). Mà \(\hat{MIC}=90\text{°}\)
⇒MK là đường trung trực của AC \(\left(2\right)\)
Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)
\(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb tg }ABC\Rightarrow MN\text{//}AC;MN=\dfrac{1}{2}AC\\ \left\{{}\begin{matrix}CP=PD\\DQ=QA\end{matrix}\right.\Rightarrow PQ\text{ là đtb tg }ACD\Rightarrow PQ\text{//}AC;PQ=\dfrac{1}{2}AC\\ \Rightarrow MN\text{//}PQ;MN=PQ\\ \Rightarrow MNPQ\text{ là hbh}\\ \left\{{}\begin{matrix}AM=MB\\CP=PD\end{matrix}\right.\Rightarrow MP\text{ là đtb tg }ABD\Rightarrow MP\text{//}BD\\ \text{Mà }AC\perp BD;MN\text{//}AC\\ \Rightarrow MP\perp MN\\ \text{Vậy }MNPQ\text{ là hcn}\)
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBEC vuông tại E
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp đường tròn
BC là đường kính
Do đó:ΔBEC vuông tại E
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn
\(a,\Delta OAB.cân.tại.O\left(OA=OB=R\right)\) nên OH là trung tuyến cũng là đường cao \(\Rightarrow OH\perp AB\left(1\right)\)
\(\Delta OCD.cân.tại.O\left(OC=OD=R\right)\) nên Ok là trung tuyến cũng là đường cao \(\Rightarrow OK\perp CD\left(2\right)\)
Ta có \(AB//CD\left(gt\right)\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OH.trùng.OK\Rightarrow O;H;K\) thẳng hàng
\(b,AH=\dfrac{1}{2}AB=8\left(cm\right);OA=R=10\left(cm\right)\\ \Rightarrow OH=\sqrt{OA^2-AH^2}=6\left(cm\right)\left(pytago\right)\\ \Rightarrow OK=HK-OH=14-6=8\left(cm\right)\\ Mà.OC=R=10\left(cm\right)\\ \Rightarrow CK=\sqrt{OC^2-OK^2}=6\left(cm\right)\\ Mà.CK=\dfrac{1}{2}CD\\ \Rightarrow CD=12\left(cm\right)\)