Cho góc nhọn xoy . Trên ox lấy điểm A và C trên oy lấy điểm B và D sao cho OA=OB ; OC=OD
a)CMR : AD = BC
b) Gọi E là giao điểm AD và BC . CMR tam giác EAC = tam giác EBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh: AD = BC.
Xét ∆OAD và ∆OBC có:
OA = OB (gt);
ˆAODAOD^ chung;
OD = OC (gt)
Do đó ∆OAD = ∆OBC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng)
b) Chứng minh: ∆EAC = ∆EBD.
Vì ∆OAD = ∆OBC (câu a)
Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)
Mà ˆA1+ˆA2=180oA^1+A^2=180o, ˆB1+ˆB2=180oB^1+B^2=180o (kề bù)
Do đó ˆA1=ˆB1A^1=B^1.
Mặt khác, OA = OB, OC = OD
Suy ra OC – OA = OD – OB
Do đó AC = BD
Xét ∆EAC và ∆EBD có:
ˆA1=ˆB1A^1=B^1 (cmt);
AC = BD (cmt);
ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)
Do đó ∆EAC = ∆EBD (g.c.g).
c) Chứng minh: OE là tia phân giác của góc xOy.
Vì ∆EAC = ∆EBD (câu b)
Nên AE = BE (hai cạnh tương ứng).
Xét ∆OAE và ∆OBE có:
OA = OB (gt);
Cạnh OE chung;
AE = BE (cmt)
Do đó ∆OAE và ∆OBE (c.c.c)
Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)
Hay OE là phân giác của góc xOy.
Tự vẽ hình
Ta có:
AC=OA+OCAC=OA+OC
BD=OB+ODBD=OB+OD
mà AC=BDAC=BD (gt) , OA=OBOA=OB (gt)
⇒OC=OD⇒OC=OD
Xét △OAD△OAD và △OBC△OBC có
OA=OBOA=OB (gt)
ˆAOD=ˆBOCAOD^=BOC^ (đối đỉnh)
OD=OCOD=OC (cmt)
⇒△OAD=△OBC⇒△OAD=△OBC (c.g.c)
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
b)
Do △OAD=△OBC△OAD=△OBC (cmt)
⇒ˆODA=ˆOCB⇒ODA^=OCB^ (hai góc tương ứng)
và ˆOAD=ˆOBCOAD^=OBC^ (hai góc tương ứng)
Ta có:
ˆOAD+ˆCAE=1800OAD^+CAE^=1800
ˆOBC+ˆDBE=1800OBC^+DBE^=1800
mà ˆOAD=ˆOBCOAD^=OBC^ (cmt)
⇒ˆCAE=ˆDBE⇒CAE^=DBE^
Xét △EAC△EAC và △EBD△EBD có
ˆCAE=ˆDBECAE^=DBE^ (cmt)
AC=BDAC=BD (gt)
ˆACE=ˆEDBACE^=EDB^ (do ˆOCB=ˆODAOCB^=ODA^ -cmt)
⇒△EAC=△EBD⇒△EAC=△EBD (g.c.g)
c)
Xét △AOB△AOB có OA=OBOA=OB (gt)
⇒△AOB⇒△AOB cân tại OO
⇒ˆOBA=ˆOAB⇒OBA^=OAB^
Xét △COD△COD có OC=ODOC=OD (cmt)
⇒△COD⇒△COD cân tại OO
⇒ˆOCD=ˆODC⇒OCD^=ODC^
Ta có:
ˆAOB+ˆOBA+ˆOAB=1800AOB^+OBA^+OAB^=1800
ˆCOD+ˆOCD+ˆODC=1800COD^+OCD^+ODC^=1800
mà ˆOBA=ˆOABOBA^=OAB^(cmt), ˆOCD=ˆODCOCD^=ODC^ (cmt)
⇒ˆAOB+2ˆOBA=1800⇒AOB^+2OBA^=1800
ˆCOD+2ˆODC=1800COD^+2ODC^=1800
mà ˆAOB=ˆCODAOB^=COD^ (đối đỉnh)
⇒ˆOBA=ˆODC⇒OBA^=ODC^
mà chúng ở vị trí so le trong
⇒AB//CD
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)