K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

23 tháng 11 2021

Theo tc 2 tt cắt nhau: \(MC=AC;MD=BD\)

\(\left\{{}\begin{matrix}\widehat{CAO}=\widehat{CMO}=90^0\\AC=CM\\CO.chung\end{matrix}\right.\Rightarrow\Delta ACO=\Delta MCO\left(ch-cgv\right)\\ \Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{1}{2}\widehat{AOM}\\ \left\{{}\begin{matrix}\widehat{OMD}=\widehat{OBD}=90^0\\MD=BD\\OD.chung\end{matrix}\right.\Rightarrow\Delta BDO=\Delta MDO\left(ch-cgv\right)\\ \Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{1}{2}\widehat{BOM}\)

Ta có \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{AOM}\right)=\dfrac{1}{2}\widehat{AOB}=\dfrac{1}{2}\cdot180^0=90^0\)

Vậy DOC vuông tại O

26 tháng 11 2023

a: O là trung điểm của AB

=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)

ΔOBD vuông tại B

=>\(OD^2=OB^2+BD^2\)

=>\(OD^2=4,8^2+6,4^2=64\)

=>OD=8(cm)

Xét ΔDON vuông tại O có OB là đường cao

nên \(OB^2=BN\cdot BD\)

=>\(BN\cdot6,4=4,8^2\)

=>BN=3,6(cm)

DN=DB+BN

=3,6+6,4

=10(cm)

Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)

=>\(ON^2+8^2=10^2\)

=>\(ON^2=36\)

=>ON=6(cm)

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó; OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)

=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)

=>OC là phân giác của góc MOA

Xét ΔCAO và ΔCMO có

OA=OM

\(\widehat{COA}=\widehat{COM}\)

OC chung

Do đó: ΔCAO=ΔCMO

=>\(\widehat{CAO}=\widehat{CMO}=90^0\)

=>AC\(\perp\)AB

mà BD\(\perp\)AB

nên BD//AC

Xét ΔOAC vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BON}\)

Do đó: ΔOAC=ΔOBN

=>OC=ON

=>O là trung điểm của CN

Xét ΔDCN có

DO là đường cao

DO là đường trung tuyến

Do đó;ΔDCN cân tại D

=>DC=DN

c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)

nên CA là tiếp tuyến của (O)

24 tháng 1 2022

Không vẽ hình vì sợ duyệt nhé.

Dễ thấy rằng \(\widehat{AMB}=90^0\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BM\perp AC\)tại M

\(\Rightarrow\)BM là đường cao của \(\Delta ABC\)

Đường tròn (O;R) có CB là tiếp tuyến tại B \(\Rightarrow AB\perp BC\)tại B \(\Rightarrow\Delta ABC\)vuông tại B

\(\Delta ABC\)vuông tại B, đường cao BM \(\Rightarrow AB^2=AM.AC\)(htl) \(\Leftrightarrow2AB^2=2AM.AC\)\(\Leftrightarrow8R^2=2AM.AC\)

Áp dụng BĐT Cô-si, ta có: \(2AM+AC\ge2\sqrt{2AM.AC}=2\sqrt{8R^2}=4R\sqrt{2}\)

Dấu "=" xảy ra khi \(2AM=AC\)\(\Rightarrow\)M là trung điểm AC \(\Rightarrow\)BM là trung tuyến của \(\Delta ABC\)

Mà \(\Delta ABC\)vuông tại B \(\Rightarrow BM=\frac{AC}{2}\)\(\Rightarrow BM=AM\left(=\frac{AC}{2}\right)\)\(\Rightarrow\widebat{AM}=\widebat{BM}\)

\(\Rightarrow\)M là điểm chính giữa của cung AB

Như vậy để \(2AM+AC\)đạt GTNN thì M là điểm chính giữa của cung AB.

a) Xét tứ giác AOMC có

\(\widehat{CAO}\) và \(\widehat{CMO}\) là hai góc đối

\(\widehat{CAO}+\widehat{CMO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên \(\widehat{MAO}=\widehat{OCM}\)(hai góc cùng nhìn cạnh OM)

hay \(\widehat{MAB}=\widehat{OCD}\)

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\Leftrightarrow\widehat{AOM}=2\cdot\widehat{COM}\)

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\Leftrightarrow\widehat{BOM}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù) 

mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)

và \(\widehat{BOM}=2\cdot\widehat{MOD}\)(cmt)

nên \(2\cdot\widehat{COM}+2\cdot\widehat{MOD}=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)

mà \(\widehat{COM}+\widehat{MOD}=\widehat{COD}\)(tia OM nằm giữa hai tia OC,OD)

nên \(\widehat{COD}=90^0\)

Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

\(\widehat{MAB}=\widehat{OCD}\)(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

\(\dfrac{AM}{CO}=\dfrac{BM}{DO}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AM\cdot OD=BM\cdot OC\)(đpcm)

29 tháng 12 2021

a: Xét tứ giác OAMC có 

\(\widehat{OAM}+\widehat{OCM}=180^0\)

Do đó: OAMC là tứ giác nội tiếp

2 tháng 1 2024

m có h.vẽ ko

 

30 tháng 12 2021

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔCOD cân tại O