K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2021

Bạn tham khảo nhé

17 tháng 6 2018

Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì

Þ H E F ^ = 90 0 ⇒ H E ⊥   E F  

Þ AC ^BD.

5 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  ∆ ABD ta có:

E là trung điểm của AB (gt)

H là trung điểm của AD (gt)

nên EH là đường trung bình của  ∆ ABD

⇒ EH // BD và EH = 1/2 BD (tính chất đường trung bình của tam giác) (1)

- Trong  ∆ CBD ta có:

F là trung điểm của BC (gt)

G là trung điểm của CD (gt)

nên FG là đường trung bình của  ∆ CBD

⇒ FG // BD và FG = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: EH // FG và EH = FG

Suy ra: Tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Trong ∆ ABC ta có:

EF là đường trung bình

⇒ EF = 1/2 AC (tính chất đường trung bình của tam giác) (3)

AC = BD (tính chất hình thang cân) (4)

Từ (1), (3) và (4) suy ra: EH = EF

Vậy : Tứ giác EFGH là hình thoi.

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

30 tháng 6 2017

Hình thoi

12 tháng 12 2018

Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên 

EF//HG (cùng song song với AC)

HE//FG (cùng song song với BD)

Suy ra tứ giác EFGH là hình bình hành

Mà  A C ⊥ B D (gt)   ⇒ E F ⊥ F G

Suy ra EFGH là hình chữ nhật

Do đó  S E F G H = H E . E F mà  E F = 1 2 A C ;  H E = 1 2 B D (tính chất đường trung bình)

17 tháng 3 2017

Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên 

EF//HG (cùng song song với AC)

HE//FG (cùng song song với BD)

Suy ra tứ giác EFGH là hình bình hành

Mà  A C ⊥ B D (gt)   ⇒ E F ⊥ F G

Suy ra EFGH là hình chữ nhật

Do đó  S E F G H = H E . E F mà E F = 1 2 A C ; H E = 1 2 B D  (tính chất đường trung bình)

Đáp án D

23 tháng 8 2016

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

24 tháng 9 2017

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC